
 

GEORGIA DOT RESEARCH PROJECT 12-29 

FINAL REPORT 

 

 

 

 
Comprehensive Evaluation of the Long-Term 

Performance of Rubberized Pavement 

 
Phase II: The Influence of Rubber and Asphalt Interaction on Mixture 

Durability 
 

 

 

 

 

 

 
 

 

 

 

 

 

OFFICE OF RESEARCH 

15 Kennedy Drive  

Forest Park, GA 30297



 
1.  Report No.: 

FHWA-GA-12-1229 

2.  Government 

Accession No. 

 

3.  Recipient’s Catalog No. 

N/A 

4.  Title and Subtitle 

    Comprehensive Evaluation of the Long-Term  

    Performance of Rubberized Pavement:  

    Phase II: The Influence of Rubber and Asphalt Interaction on 

Mixture Durability 

5.  Report Date 

December 2014 

6.  Performing Organization Code 

N/A 

7.  Authors 

    Junan Shen, Zhaoxing Xie, and Bo Li 

8.  Performing Organization Report 

No.12-29 

9.  Performing Organization Name and Address 

 

Georgia Southern University 

Statesboro, GA 30460-8047, USA 

10.  Work Unit No. (TRAIS) 

 

11.  Contract or Grant No. 

  

12.  Sponsoring Agency Name and Address 

 

Georgia Department of Transportation 

Office of Research 

15 Kennedy Drive 

    Forest Park, GA 30297-2534 

13.  Type of Report and Period Covered 

 Final Report 

 January 2013 – January 2015 

14.  Sponsoring Agency Code 

 HOTM 

15.  Supplementary Notes 

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 

16.  Abstract 

This project investigated the long-term performance of hot asphalt mixes containing crumb rubber 

modifiers (CRM) added in dry or wet processes. A total of eight asphalt mixtures—four Porous 

European Mixtures (PEMs) and four Stone Matrix Asphalts (SMAs)—were designed with PG 76-22 

modified with CRM, which was added in either a dry or wet process. These mixtures were compared to 

control mixtures using an SBS-modified PG 76-22. Mixtures incorporating a “hybrid”-modified PG 

76-22 were also evaluated. First, the samples were weathered in the Georgia Weathering Asphalt Device 

(GWAD) for 1,000 hrs and 3,000 hrs and tested to determine their dynamic modulus, fatigue life, 

rutting, and Cantabro. Binders extracted from the weathered samples were then evaluated using a 

dynamic shear rheometer (DSR), gel-permeable chromatography (GPC), and Fourier transform infrared 

spectroscopy (FTIR). Second, the interactions of dry- and wet-processed CRM with asphalt binder were 

compared during storage and paving. Results indicated: 1) adding TOR to the CRM binder improved 

PG grade and separation resistance; 2) the dynamic modulus, |E*|, of both rubberized PEM and SMA in 

dry process did not differ significantly from that of the control mixtures or mixtures using the “hybrid”- 

modified binders before and after weathering; 3) the fatigue life (Nf) of unaged rubberized PEM and 

SMA in the dry process was similar to that in wet process, although lower than that of control SBS; 4) 

after 3000-hrs aging, the fatigue life of the dry-processed rubberized SMA is similar to that of the 

wet-processed but lower than that of hybrid and SBS SMA, regardless of strain and stress levels or test 

temperatures; 5) the rutting and Cantabro loss of the rubberized PEM and SMA in dry process were 

higher than those of control SBS after weathering; 6) CRM and asphalt binder interact during the 

production and paving stages based on DSR, GPC, FTIR, and AFM results. The effect of weathering on 

the properties of the asphalt binders in rubberized, dry-processed PEMs and SMAs was similar to that in 

the wet-processed mixtures but greater than that in the control SBS. 

 

17.  Key Words:  

pavement, dry process, crumb rubber, long-term 

performance, rutting, dynamic modulus, fatigue life, 

interaction, weathering, DSR, GPC, FTIR  

18.  Distribution Statement:  N/A 

 

19.  Security Classification (of 

this report):  Unclassified 

 

20.  Security Classification  

  (of this page) 

Unclassified 

21.  No. of Pages: 

 

22.  Price:  

N/A 

 

Form DOT 1700.7 (8-69)  



GDOT Research Project No. 12-29 
 

Comprehensive Evaluation of the Long-Term Performance 

of Rubberized Pavement  

 
Phase II: The Influence of Rubber and Asphalt Interaction on Mixture 

Durability 

 

Final Report 

 

 

 

 

 

By 

Junan Shen, Ph.D. 

Associate Professor of Civil Engineering  

Director, Asphalt Research Laboratory  

 

Zhaoxing Xie, Ph.D. 

Postdoctoral Fellow 

  

Bo Li, Ph.D. 

Postdoctoral Fellow 

 

College of Engineering and Information Technology 

Georgia Southern University 

Forest Dr., Engineering Bldg. 

Statesboro, GA 30460-8047, USA 

 

 

 

 

January 2015 

 

 

The contents of this report reflect the views of the author(s), who is (are) 

responsible for the facts and accuracy of the data presented herein. The 

contents do not necessarily reflect the official views or policies of the 

Georgia Department of Transportation or the Federal Highway 

Administration. This report does not constitute a standard, specification, 

or regulation.



i 

 

Table of Contents 

LIST OF FIGURES ......................................................................................................................... vi 

LIST OF TABLES .......................................................................................................................... vii 

EXECUTIVE SUMMARY ........................................................................................................... viii 

Background ........................................................................................................................ viii 

Major Findings ................................................................................................................... viii 

CHAPTER 1 INTRODUCTION ...................................................................................................... 1 

1.1 Background and Objectives ............................................................................................. 1 

1.2 Report Organization ........................................................................................................ 2 

CHAPTER 2 LITERATURE REVIEW ............................................................................................ 3 

2.1 Scrap Tires and Crumb Rubber Modifiers (CRM) .......................................................... 3 

2.2 Use of CRM in Asphlt Binders and Mixtures ................................................................. 4 

2.2.1 Dry process ............................................................................................................... 5 

2.2.2 Wet process .............................................................................................................. 7 

2.2.3 Wet process, terminal blend ................................................................................... 10 

2.2.4 Some applications of CRM overseas ...................................................................... 11 

2.3 Mechanisms of CRM Binders ....................................................................................... 11 

2.3.1 Interaction between asphalt and CRM in the dry process ...................................... 11 

2.3.2 Interaction between asphalt and CRM in the wet process ...................................... 11 

2.4 Performance Properties of CRM Asphalt and Mixtures ................................................ 12 

2.4.1 CRM asphalt binder ................................................................................................ 12 

2.4.2 CRM asphalt mixtures ............................................................................................ 13 

2.5 Findings and Further Studies ......................................................................................... 14 

CHAPTER 3 PROPERTIES OF RUBBERIZED BINDER ........................................................... 15 

3.1 Introduction ................................................................................................................... 15 

3.2 Materials and Test Procedures ....................................................................................... 16 

3.3 Results and Discussion .................................................................................................. 19 

3.3.1 Effect of TOR on high-temperature properties ....................................................... 19 

3.3.2 Effect of TOR on low-temperature properties ........................................................ 26 

3.3.3 Effect of TOR on separation resistance .................................................................. 28 

3.4 Summary and Conclusions for Rubberized Binder Properties ...................................... 29 

CHAPTER 4 DESIGN OF RUBBERIZED PEM AND SMA........................................................ 31 

4.1 Introduction ................................................................................................................... 31 

4.2 Materials and Test Procedures ....................................................................................... 31 

4.3 Design Process .............................................................................................................. 35 

4.4 Design Validation by Selected Mixture Properties ....................................................... 42 



ii 

 

4.5 Summary and Conclusions for Mix Design Verification .............................................. 47 

CHAPTER 5 DYNAMIC MODULUS OF RUBBERIZED PEM AND SMA .............................. 48 

5.1 Introduction ................................................................................................................... 48 

5.2 Materials and Test Procedures ....................................................................................... 49 

5.3 Results and Discussions ................................................................................................ 51 

5.3.1 PEM dynamic modulus and phase angle ................................................................ 51 

5.3.2 SMA dynamic modulus and phase angle ............................................................... 61 

5.4 Summary and Conclusions on Dynamic Modulus ........................................................ 68 

CHAPTER 6 FATIGUE LIFE OF RUBBERIZED PEM AND SMA ............................................ 70 

6.1 Introduction ................................................................................................................... 70 

6.2 Specimen Fabrication and Test Procedures ................................................................... 71 

6.3 Results and Discussions ................................................................................................ 74 

6.3.1 PEM Fatigue Performance ..................................................................................... 74 

6.3.2 SMA Fatigue Performance ..................................................................................... 77 

6.4 Summary and Conclusions for Fatigue Testing of PEM and SMA Mixtures ............... 80 

CHAPTER 7 EFFECT OF WEATHERING ON RUBBERIZED PEM AND SMA ...................... 81 

7.1 Introduction ................................................................................................................... 81 

7.2 Materials and Test Procedures ....................................................................................... 82 

7.3 Results and Discussions ................................................................................................ 83 

7.3.1 Influence of weathering on |E*| of PEM ................................................................ 83 

7.3.2 Influence of weathering on |E*| of SMA ................................................................ 87 

7.3.3 Influence of weathering on fatigue life ................................................................... 90 

7.3.4 Influence of weathering on rutting resistance ......................................................... 94 

7.3.5 Influence of weathering on Cantabro loss .............................................................. 95 

7.3.6 Influence of weathering on indirect tensile strength ............................................... 96 

7.4 Summary and Conclusions on Weathering Effects ....................................................... 99 

CHAPTER 8 INTERACTION BETWEEN CRM AND ASPHALT ............................................ 100 

8.1 Introduction ................................................................................................................. 100 

8.2 Materials and Test Methods ........................................................................................ 101 

8.3 Results and Discussion ................................................................................................ 105 

8.3.1 Results for rubberized PEM ................................................................................. 105 

8.3.2 Results for rubberized SMA ................................................................................. 110 

8.3.3 Nanoscale evaluation of asphalt/CRM interaction ............................................... 116 

8.3.4 Rheological properties of dry- and wet-processed rubberized binders................. 118 

8.4 Summary and Conclusions on CRM-Asphalt Interaction ........................................... 119 

CHAPTER 9 EFFECT OF WEATHERING ON CRM/ BINDER INTERACTION .................... 121 



iii 

 

9.1 Introduction ................................................................................................................. 121 

9.2 Materials and Test Methods ........................................................................................ 121 

9.3 Results and Discussions .............................................................................................. 121 

9.3.1 Effect of weathering on asphalt binder in PEM ................................................... 121 

9.3.2 Effect of weathering on asphalt binder in SMA ................................................... 126 

9.4 Summary and Conclusions on Effect of Weathering on CRM-Asphalt Interaction.... 131 

CHAPTER 10 FIELD INSPECTION OF PAVEMENT PERFORMANCE ................................. 132 

10.1 Visual Investigation of Test Section .......................................................................... 132 

10.2 Performance Evaluation of Core Samples ................................................................. 134 

10.3 Summary and Conclusions on Field Investigation .................................................... 141 

CHAPTER 11 SUMMARY AND CONCLUSIONS .................................................................... 143 

REFERENCES ............................................................................................................................. 146 

 

 

 

 

  

 

 

 

 



iv 

 

LIST OF FIGURES 

Figure 2-1. Raw materials of tires .................................................................................. 3 

Figure 2-2. Ambient ground rubber (left)’ cryogenically fractured rubber (right) (Shen 

& Amikhanian 2005) .................................................................................. 4 
Figure 2-3. CR modification of asphalt in a continuous blend system 

(http://maxlinktyrerecycling.com) .................................................................... 4 

Figure 2-4. Feed system for the dry process (Hines 2007) ............................................ 5 

Figure 2-5. Asphalt rubber (left); terminal blends (right) ............................................ 10 

Figure 3-1. Flow chart for testing rubberized asphalt binder properties ...................... 15 

Figure 3-2. CRM (left) and TOR (right) ...................................................................... 16 

Figure 3-3. Rolling thin-film oven ............................................................................... 17 

Figure 3-4. Pressure-aging vessel ................................................................................ 17 

Figure 3-5. Dynamic shear rheometer ......................................................................... 18 

Figure 3-6. Bending-beam rheometer .......................................................................... 18 

Figure 3-7. Separation tube test ................................................................................... 18 

Figure 3-8. G*/sin(δ) of unaged rubberized asphalt binder at 76 ºC ........................... 19 

Figure 3-9. Phase angle of unaged rubberized asphalt binders at 76 ºC ...................... 22 

Figure 3-10. Fail temperature of unaged rubberized asphalt binders .......................... 23 

Figure 3-11. G*/ sinδ of RTFO residuals at 76ºC ........................................................ 24 

Figure 3-12. Phase angle of RTFO residuals at 76 ºC ................................................. 25 

Figure 3-13. Creep stiffness of PAV-aged rubberized asphalt binder at -12 ºC ........... 27 

Figure 3-14. m-values of PAV-aged rubberized asphalt binder at -12 ºC .................... 28 

Figure 3-15. Separation Tube DSR Results ................................................................. 29 

Figure 4-1. Flow chart for the design of rubberized PEM and SMA .......................... 31 

Figure 4-2. Mineral fibers ............................................................................................ 33 

Figure 4-3. Cellulose fibers.......................................................................................... 34 

Figure 4-4. Aggregate gradations of PEM and SMA used for this study .................... 34 

Figure 4-5. Surface-capacity test ................................................................................. 36 

Figure 4-6. KC-factor curve (from GDOT 114) .......................................................... 37 

Figure 4-7. VMA curves for PEM ............................................................................... 39 

Figure 4-8. AV curves for SMA ................................................................................... 41 

Figure 4-9. APA Test .................................................................................................... 42 

Figure 4-10. PEM average rut depths .......................................................................... 43 

Figure 4-11. SMA average rut depths .......................................................................... 43 

Figure 4-12. Retrofitted APA testing ........................................................................... 44 

Figure 4-13. Results of retrofitted APA testing for PEM ............................................. 45 

Figure 4-14. Results of retrofitted APA testing for SMA ............................................ 45 

Figure 4-15. Drain-down testing .................................................................................. 46 

Figure 5-1. Flow chart for determining the dynamic moduli of rubberized PEM and 

SMA ......................................................................................................... 49 

Figure 5-2. Gyratory compaction of PEM and SMA specimens ................................. 50 

Figure 5-3. Specimen coring and cutting ..................................................................... 50 

Figure 5-4. Dynamic modulus samples and conditioning ........................................... 51 

Figure 5-5. AMPT device and instrumentation ............................................................ 51 

Figure 5-6. PEM dynamic modulus vs. temperature at 10 Hz ..................................... 52 

Figure 5-7. PEM dynamic modulus vs. temperature at 1 Hz ....................................... 52 

Figure 5-8. PEM dynamic modulus vs. temperature at 0.1 Hz .................................... 53 

Figure 5-9. PEM dynamic modulus vs. frequency at 45 °C ........................................ 54 



v 

 

Figure 5-10. PEM dynamic modulus vs. frequency at 20 °C ...................................... 54 

Figure 5-11. PEM dynamic modulus vs. frequency at 4 °C ........................................ 54 

Figure 5-12. PEM phase angle vs. temperature at 10 Hz............................................. 55 

Figure 5-13. PEM phase angle vs. temperature at 1 Hz............................................... 56 

Figure 5-14. PEM phase angle vs. temperature at 0.1 Hz............................................ 56 

Figure 5-15. PEM phase angle vs. frequency at 45 °C ................................................ 57 

Figure 5-16. PEM phase angle vs. frequency at 20 °C ................................................ 57 

Figure 5-17. PEM phase angle vs. frequency at 4 °C .................................................. 58 

Figure 5-18. Master curves of PEM dynamic moduli.................................................. 59 

Figure 5-19. Master curves of PEM phase angles ....................................................... 61 

Figure 5-20. SMA dynamic modulus vs. temperature at 10 Hz ................................... 61 

Figure 5-21. SMA dynamic modulus vs. temperature at 1 Hz ..................................... 62 

Figure 5-22. SMA dynamic modulus vs. temperature at 0.1 Hz .................................. 62 

Figure 5-23. SMA dynamic modulus vs. frequency at 45 °C ...................................... 62 

Figure 5-24. SMA dynamic modulus vs. frequency at 20 °C ...................................... 63 

Figure 5-25. SME dynamic modulus vs. frequency at 4 °C ........................................ 63 

Figure 5-26. Master curves of SMA dynamic modulus ............................................... 64 

Figure 5-27. SMA phase angle vs. temperature at 10 Hz ............................................ 65 

Figure 5-28. SMA phase angle vs. temperature at 1 Hz .............................................. 66 

Figure 5-29. SMA phase angle vs. temperature at 0.1 Hz ........................................... 66 

Figure 5-30. SMA phase angle vs. frequency at 45 °C ................................................ 66 

Figure 5-31. SMA phase angle vs. frequency at 20 °C ................................................ 67 

Figure 5-32. SMA phase angle vs. frequency at 4 °C .................................................. 67 

Figure 6-1. Flow chart for determining the fatigue life of rubberized PEM and SMA71 

Figure 6-2. Specimen fabrication ................................................................................. 72 

Figure 6-3. PEM fatigue life under strain control ........................................................ 75 

Figure 6-4. PEM fatigue life under stress control ........................................................ 76 

Figure 6-5. SMA fatigue life under strain control ........................................................ 78 

Figure 6-6. SMA fatigue life under stress control ........................................................ 79 

Figure 7-1. Flow chart to measure the durability properties of PEM and SMA .......... 82 

Figure 7-2. Georgia asphalt weathering device ........................................................... 83 

Figure 7-3. |E*| master curves: (a) unaged and 1000-hour aging; (b) unaged and 

3000-hour aging ....................................................................................... 84 

Figure 7-4. Asphalt foamed in PEM samples .............................................................. 85 

Figure 7-5. Modular aging ratio for dry-processed rubberized PEM .......................... 86 

Figure 7-6. Modular aging ratio for wet-processed rubberized PEM .......................... 86 

Figure 7-7. Modular aging ratio for hybrid PEM ........................................................ 86 

Figure 7-8. Modular aging ratio for SBS PEM ............................................................ 87 

Figure 7-9. |E*| master curves for SMA: (a) unaged and 1000-hour aging; (b) unaged 

and 3000-hour aging ................................................................................. 88 

Figure 7-10. Modular aging ratio for dry-processed rubberized SMAs ...................... 89 

Figure 7-11. Modular aging ratio for wet-processed rubberized SMAs ...................... 89 

Figure 7-12. Modular aging ratio for SBS SMA ......................................................... 90 

Figure 7-13. Modular aging ratio for hybrid SMA ...................................................... 90 

Figure 7-14. Failure locations: (a) mid-failure; (b) end-failure (Hou 2009)................ 91 

Figure 7-15. SMA fatigue life under strain control after 3,000-hour aging ................. 92 

Figure 7-16. SMA fatigue life under stress control after 3,000-hour aging ................. 93 

Figure 7-17. PEM rut depth ......................................................................................... 94 

Figure 7-18. SMA rut depth ......................................................................................... 95 

Figure 7-19. Cantabro loss results ............................................................................... 96 



vi 

 

Figure 7-20. Water bath ............................................................................................... 97 

Figure 7-21. Indirect tensile strength test .................................................................... 97 

Figure 7-22. Indirect tensile strength results for PEM ................................................. 98 

Figure 7-23. Indirect tensile strength results for SMA ................................................ 98 

Figure 8-1. Flow chart of the experimental design .................................................... 101 

Figure 8-2. Asphalt binder extracted from mixture dissolved in THF ....................... 101 

Figure 8-3. Separated asphalt binder and THF .......................................................... 102 

Figure 8-4. GPC system used in this study ................................................................ 102 

Figure 8-5. A typical chromatogram of an asphalt binder ......................................... 103 

Figure 8-6. FTIR system used in this study ............................................................... 104 

Figure 8-7. G* of asphalt binder extracted from rubberized PEM ............................ 105 

Figure 8-8. Phase angle of asphalt binders extracted from rubberized PEM ............. 106 

Figure 8-9. Rutting resistance of asphalt binders extracted from rubberized PEM ... 107 

Figure 8-10. LMS of asphalt binder extracted from rubberized PEM ....................... 109 

Figure 8-11. FTIR spectra of CRM asphalt extracted from rubberized PEM ............ 110 

Figure 8-12. Bonding ratio (C=O) in CRM asphalt extracted from PEM ................. 110 

Figure 8-13. G* of asphalt binder extracted from rubberized SMA .......................... 111 

Figure 8-14. Phase angle of asphalt binder extracted from SMA .............................. 112 

Figure 8-15. Rutting resistance of binder extracted from rubberized SMA .............. 113 

Figure 8-16. LMS of asphalt binder extracted from rubberized SMA ...................... 114 

Figure 8-17. FTIR spectra of CRM asphalt extracted from rubberized SMA ........... 115 

Figure 8-18. Bonding ratio (C=O) in CRM asphalt extracted from dry- and 

wet-processed rubberized SMA ............................................................ 115 

Figure 8-19. Nanosurf AFM ...................................................................................... 116 

Figure 8-20. Topographic and phase images of PG 67-22 ......................................... 117 

Figure 8-21. Phase images of unaged rubberized asphalt binders ............................. 117 

Figure 8-22. Phase images of short-term aged rubberized asphalt binders ............... 117 

Figure 8-23. Frequency sweep results ....................................................................... 119 

Figure 9-1. G*sinδ (at 19 ℃) of asphalt binder extracted from PEM ........................ 122 

Figure 9-2. LMS of asphalt binder extracted from PEM ........................................... 123 

Figure 9-3. FTIR spectra of asphalt binder extracted from PEM .............................. 125 

Figure 9-4. Bonding ratio (C=O) of asphalt binder extracted from rubberized PEM 126 

Figure 9-5. G*sin(δ) (at 19 ℃) of asphalt binder extracted from SMA .................... 127 

Figure 9-6. FTIR spectra of asphalt binder extracted from SMA .............................. 130 

Figure 9-7. Ratio of bonding (C=O) of asphalt binder extracted from SMA ............ 131 

Figure 10-1. Rut-depth ruler ...................................................................................... 132 

Figure 10-2. Rut measurement ................................................................................... 133 

Figure 10-3. Wet-processed rubberized OGFC surface ............................................. 134 

Figure 10-4. Dry-processed rubberized OGFC surface ............................................. 134 

Figure 10-5. Control OGFC surface .......................................................................... 134 

Figure 10-6. Core sample drilling .............................................................................. 135 

Figure 10-7. Core samples ......................................................................................... 135 

Figure 10-8. Field core specimens for APA Hamburg testing ................................... 136 

Figure 10-9. Two different outputs of the HWTD test (Bhasin et al. 2004) .............. 137 

Figure 10-10. Stripping point determination ............................................................. 137 

Figure 10-11. Top view of test specimens ................................................................. 138 

Figure 10-12. APA Hamburg test results.................................................................... 139 

Figure 10-13. Creep slope for core samples .............................................................. 140 

Figure 10-14. Rutting rates for rut profiles ................................................................ 141 

 



vii 

 

LIST OF TABLES 

Table 2-1. Some applications of dry-processed CRM mixtures by state ....................... 7 
Table 2-2. Some applications of wet-processed CRM mixtures by state ...................... 9 
Table 3-1. CRM Gradations ......................................................................................... 16 
Table 3-2. Statistical analysis of the G*/sin(δ) of unaged rubberized asphalt binders 20 
Table 3-3. Statistical analysis of the phase angle of unaged rubberized asphalt binders

...................................................................................................................................... 22 
Table 4-1. Properties of materials used ........................................................................ 32 
Table 4-2. Properties of cellulose fibers* .................................................................... 32 
Table 4-3. Properties of mineral fibers* ...................................................................... 33 
Table 4-4. Properties of the binders ............................................................................. 33 
Table 4-5. Surface-capacity test results ....................................................................... 36 
Table 4-6. Asphalt content as determined by the modified Marshall method ............. 38 
Table 4-7. Results of drain-down testing ..................................................................... 40 
Table 4-8. Volumetric properties of PEMs ................................................................... 40 
Table 4-9. Volumetric properties of SMA mixtures ..................................................... 41 
Table 4-10. Results of drain-down testing ................................................................... 46 
Table 5-1. Dynamic modulus test matrix ..................................................................... 48 
Table 5-2. Statistical analysis of PEM dynamic modulus ............................................ 60 
Table 5-3. Statistical analysis of SMA dynamic modulus ........................................... 64 
Table 5-4. Statistical analysis of SMA phase angle ..................................................... 68 
Table 8-1. Assignments of the main bands of asphalt binder in FTIR spectra .......... 104 
Table 8-2. Statistical analysis of G* of asphalt binder from rubberized PEM .......... 106 
Table 8-3. Statistical analysis of phase angles of binders from rubberized PEM ...... 107 
Table 8-4. Statistical analysis of asphalt binder rutting resistance ............................ 108 
Table 8-5. Statistical analysis of the G* of asphalt binder from rubberized SMA .... 111 
Table 8-6. Statistical analysis of phase angle of binder from rubberized SMA......... 112 
Table 8-7. Statistical analysis of asphalt binder rutting resistance ............................ 114 
Table 10-1. Field inspection test results ..................................................................... 133 
Table 10-2. Rut depth per number of wheel passes ................................................... 138 
Table 10-3. Summary of test results .......................................................................... 139 
Table 10-4. Rates of rutting at the two-cycle interval ................................................ 141 

 



viii 

 

EXECUTIVE SUMMARY 

Background 

Crumb rubber modifier (CRM), a by-product of the scrap tire industry, is introduced 

into asphalt binders by a wet process or into asphalt mixtures by a dry process. In both, 

the crumb rubber is expected to substitute for SBS (styrene-butadiene-styrene) in the 

polymer-modified asphalt binder normally required by the Georgia Department of 

Transportation (GDOT) to produce performance-grade (PG) 76-22 in the following 

types of hot mix asphalt (HMA): porous European mix (PEM), stone matrix asphalt 

(SMA), and polymer-modified 12.5-mm Superpave mixtures. GDOT has paved 

several highway sections using dry-processed rubberized PEM and SMA. In 2011, 

phase 1 of a “Comprehensive Evaluation of the Long-Term Performance of 

Rubberized Pavements” was launched. This preliminary study, based on visual 

inspection of the pavements and evaluation of core samples, determined density, 

permeability, Marshall stability, and flow. Phase II was a comprehensive study 

comparing the long-term durability of both dry- and wet-processed PEM and SMA to 

that of mixtures using hybrid and SBS-modified binders. The interaction of CRM and 

asphalt in the dry process was compared with that in the wet process.    

 

Major Findings 

1) The G*/sin (σ) of unaged rubberized asphalt binder increased 14% and 20%, 

respectively, when 3% and 6% doses of the cross-link agent, transpolyoctenamer 

(TOR) polymer were added. The absolute difference in failure temperatures for 

binders taken from the top and bottom of a tube was about 20% less than for those 

of the wet-processed control when 3% and 6% doses of TOR were added to PG 

67-22 asphalt.  
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2) By following GDOT 114 and 123, PEM and SMA incorporating either dry- or 

wet-processed CRM binders or hybrid and SBS-modified binders can be 

successfully designed. The volumetric, rutting, moisture susceptibility, drain-down, 

and Cantabro loss properties of the designed PEM and SMA met GDOT’s 

requirements, although the rutting depths of PEM and SMA with both dry- and 

wet-processed CRM were higher than those of control SBS. 

3) The dynamic modulus, |E*|, of PEM and SMA with dry-processed CRM did not 

differ significantly from that of other PEMs and SMAs, regardless of whether 

samples were unaged or aged for 1,000 or 3,000 hours.  

4) No significant difference was found in |E*| between unaged and 1,000-hour aged 

samples but 3,000-hour aging had a significant effect on |E*| at low frequency or 

high temperature for both PEM and SMA. 

5) The fatigue life of unaged rubberized PEM and SMA modified using either the 

dry or wet process was similar but generally shorter than that of mixtures using 

hybrid and SBS-modified binders.  

6) After 3000-hours of aging, the fatigue life of the dry-processed rubberized SMA 

was still similar to that of wet-processed but shorter than that of hybrid and SBS 

modified SMA, regardless of strain and stress levels or test temperatures. In most 

of the fatigue tests, aged PEM samples failed at the two ends tested and were 

deemed unsuccessful. 

7) Rutting and Cantabro loss in both dry- and wet-processed PEM and SMA were 

higher than in the control SBS- and hybrid-modified PEM mixtures, regardless of 

aging duration.  

8) The interaction between CRM and asphalt binder was evident during the 

production and paving stages based on DSR, GPC, FTIR, and AFM results, 



x 

 

regardless of mixture type. 

9) Values of G*sin(δ) differed significantly among the four asphalt binders extracted 

from PEM and SMA after weathering for 1,000 and 3,000 hrs, regardless of 

mixture type. 

10) The dry- and wet-processed and SBS-modified control PEM pavements in SR 247 

Macon exhibited good characteristics after three years of service.  
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CHAPTER 1 INTRODUCTION 
 

 

1.1 Background and Objectives 

Crumb rubber modifier (CRM) is introduced into asphalt binders by a wet process or 

into asphalt mixtures by a dry process. A literature review indicates that 

wet-processed samples better resisted permanent deformation and fatigue than 

conventional mixtures (Hicks et al. 1995; Huang et al. 2002; Hunt 2002; Kaloush et al. 

2003; Love 2014; Lyons 2012; Oliver 2000). In the wet process, lengthy blending at 

high temperature provides sufficient interaction between the asphalt and CRM to 

result in good properties. In the traditional dry process, the shorter reaction period 

made CRM and asphalt interaction negligible (Rahman et al. 2004).  

However, recent laboratory research indicates that asphalt/CRM interaction in the 

dry process during mixing, transporting, and paving is much greater than previously 

thought (Hernández-Olivares et al. 2009; Lopez-Moro et al. 2013; Rahman et al. 2003; 

Singleton 2000). Field performance of dry-processed CRM mixtures has been 

inconsistent, with service life varying from two to twenty years (Rahman et al. 2004), 

depending on the type of mixture and paving method. 

Asphalt mixtures with smaller CRM (less than 30 mesh), lower content (about 10% 

of the asphalt binder mass), and an added cross-link agent, transpolyoctenamer (TOR) 

polymer, were used in dry-processed test pavements on I-75 Valdosta (2009), I-20 

Augusta (2009), and I-75 Perry (2007) in Georgia (Hines 2007; Shen & Xie 2012; Xie 

& Shen 2013). CRM was added to the asphalt concrete as a substitute for the SBS 

binder modifier normally required to produce PG 76-22 in two types of HMA: porous 

European mix (PEM) and stone matrix asphalt (SMA) (Shen & Xie 2012). Phase 1 of 
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this project investigated the performance of the dry-processed rubberized pavements 

after 3-7 years of service. To learn more, Phase 2 quickly followed to determine the: 

1. durability of well-designed, wet- and dry-processed rubberized PEM and SMA in 

the laboratory after long-term weathering;  

2. aging resistance of the binders recovered from rubberized PEM and SMA after 

long-term weathering; 

3. interaction of asphalt with crumb rubber added using the dry process: do the 

rubbers modify the binder or the mixture?  

4. performance of both wet- and dry-processed CRM PEM pavement sections from 

SR-247. 

 

1.2 Report Organization  

This report is divided into 11 chapters. Chapter 1 presents a general introduction. 

Chapter 2 documents the literature review. Chapter 3 describes the properties of 

rubberized asphalt binder; Chapter 4 summarizes the design of rubberized PEM and 

SMA. Chapter 5 summarizes findings on their dynamic moduli; Chapter 6, their 

fatigue life; Chapter 7, the effect of weathering on their performance. Chapter 8 

describes the interaction between CRM and asphalt binder, and Chapter 9 summarizes 

the effect of weathering on their interaction. Chapter 10 summarizes the field 

inspection of pavement performance, and Chapter 11 presents conclusions and 

recommendations. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Scrap Tires and Crumb Rubber Modifiers (CRM) 

Scrap tires are discarded at an estimated rate of one per year per capita in the United 

States (EPA 2010). They are among the most problematic waste sources due to the large 

volume produced and their resistance to decay (see Fig. 2-1). Of the many ways to deal 

with them, retreading and recycling are environmentally friendly, while putting them into 

landfills is not. Recycling tire-derived aggregates and crumb rubbers for construction 

purposes is one practical solution (Mashaan et al. 2014). 

 

Figure 2-1. Raw materials of tires 

Crumb rubber modifier (CRM), sometimes referred to as ground tire rubber (GTR), 

is used to modify asphalt binder for paving mixtures. Its addition improves the 

properties of the asphalt binder and the mixture (Presti 2013).  

 Two types of CRM are processed from scrap tires: ambient and cryogenic. Figure 

2-2 shows the main difference in their microstructure (Shen & Amikhanian 2005). 

Ambient CRM has a porous or fluffy appearance, while cryogenic CRM is angular, 

with a smooth, cracked surface. Both have white particles, or spots, which are the 

reinforced steel put into tires and improve the performance of the base asphalt binder. 
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Figure 2-2. Ambient ground rubber (left); cryogenically fractured rubber (right) (Shen 

& Amikhanian 2005) 

2.2 Use of CRM in Asphalt Binders and Mixtures  

CRM can be incorporated into asphalt paving mixes using a wet or dry process. In the 

wet process, CRM particles are well mixed with a base binder to form an asphalt and  

rubber blend, which is then mixed with aggregate in a mixing chamber (drum or 

pugmill) at an asphalt plant to produce a rubberized asphalt mixture, following ASTM 

D 8 (1997). Figure 2-3 shows the steps in wet-processed crumb rubber (CR) 

modification of asphalt in a continuous blend system at an asphalt mix plant. 

 

Figure 2-3. CR modification of asphalt in a continuous blend system 

(http://maxlinktyrerecycling.com) 
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In the dry process, CRM particles are introduced into the drum simultaneously 

with the aggregate; then they are mixed with injected asphalt binder to produce a 

rubberized asphalt mixture. CRM binders can be applied to gap-graded, dense-graded, 

and open-graded mixtures (Heitzman 1992). Figure 2-4 shows the feed system used for 

the dry process (Hines 2007). 

 

 

Figure 2-4. Feed system for the dry process (Hines 2007) 

 

In 1950, the use of CRM in asphalt as a stress-absorbing membrane interlayer 

(SAMI) was first reported. By 1975, CRM was successfully incorporated into asphalt 

mixtures, and in 1988, rubberized asphalt was defined in the American Society for 

Testing and Materials (ASTM) D8 and later specified in D6114-97. In 1992, the 

1960s patent for the McDonald process expired; the material became a part of the 

public domain. From 1991-1997, the US Intermodal Surface Transportation 

Efficiency Act (ISTEA) mandated its widespread use. The concept started to make a 

“quiet comeback” (Kuennen 2004), and considerable research has been conducted 

worldwide to validate and to improve technologies related to rubberized asphalt 

pavements. 

 

2.2.1 Dry process  

The industry uses three main types of dry-process technology: 
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PlusRide (patented) 

 

Patented in 1950, in PlusRide technology, 1 to 3 percent of granulated rubber per total 

mix weight was added to aggregate in a hot mix central plant operation before adding 

asphalt binders (Rahman, 2004). Rubber particles range from 4.2 mm (1/4 in) to 2.0 

mm (No. 10 sieve). The target air-void content of the asphalt mix is 2 to 4 percent, 

which is usually attained when the asphalt binder content is in the 7.5 to 9 percent 

range. The process is normally applied for gap grading and improving mixture 

stability. 

 

Generic Dry Technology (not patented) 

The generic dry process, also known as the TAK system, was developed in the late 

1980s to early 1990s. Up to 3 percent by mass of the weight of mixtures is added to a 

dense graded mixture. Generally, this system uses less than 1 percent of the weight of 

the mixture and smaller crumb rubber than PlusRide. The size of the rubber particles 

for this process ranges from 2 mm to 180μm, and aggregate gradations of the 

mixture are conventional in both dense and gap.  

 

Chunk Rubber (not patented) 

The US Army Corps of Engineers’ Cold Region Research Engineering Laboratory 

(CRREL) developed this method in the late 1970s and early 1980s to evaluate the 

ice-disbonding characteristics of asphalt paving materials. The rubber particles 

typically range in size from 4.75 to 9.5 mm, and mixture gradations must be adjusted 

to provide space in the aggregate matrix for the substitute rubber particles. Although 

this process has not yet been field evaluated, laboratory wheel test results indicate that 

the higher rubber content could increase the incidence of ice cracking (Oliver
 
1981). 
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Summary of application performance by state. In the past few years, several states 

have applied dry-processed CRM asphalt mixtures, as summarized in Table 2-1. 

Table 2-1. Some applications of dry-processed CRM asphalt mixtures by state 

 

2.2.2 Wet process  

State  Method/type of mixture Observations 

Alabama 
CRM/AC-10 

 

 No significant difference from wet mixes in 

resilient modulus, indirect tension, and dynamic 

creep (Buncher1995) 

Alaska PlusRide gap-graded  
 Deeper ruts and faster rut accumulation rate than 

conventional HMA mixes’ (Saboundjian 1997)  

Arkansas 

AC-30 

(1, 2, 3% by wt. of 

aggregate) 

 Slightly better if rubber was pretreated with 

extender oil prior to mixing 

 Inferior to control and wet-processed mixtures 

(Gowda 1996; Khalid 2012) 

Caltrans PlusRide /dense-graded 

 2 of 4 dry-process projects out-performed 

conventional mixtures; one was comparable; one 

was not properly designed and required an 

overlay (Van Kirk 1991) 

Georgia  
PEM/SMA/Superpave 

10% CRM with mesh 

-30/TOR 

 Performed as well as SBS mixtures after 3-5 

years’ service based on visual inspection 

 Core samples did not differ significantly in 

density, permeability, and Marshall stability from 

SBS control. Cantabro loss was slightly greater  

Illinois HMA 
 Lower performance than conventional asphalts 

(Volle 2000) 

Louisiana PlusRide/gap-graded  
 Lower initial structural capacities (DYNAFLECT 

structural number) than the conventional 

dense-graded control 

Minnesota 
PlusRide/dense-graded 

overlay 

 Performed well, with improved crack reflection 

 Benefits did not offset higher cost (Turgeon 

1989) 

New York 
Overlay project 

 
 After 3 years, no economic or structural benefit 

(Shook 1990) 

Oregon PlusRide 

 Poor performance (premature degradation) 

 Cost 50-100% more than conventional pavements 

(Hunt 2002) 

South Carolina PlusRide 

 Pelham Road has deteriorated in the 8 years since 

it was paved  

 Other asphalt rubber projects appear to be in 

satisfactory condition (Amirkhanian 2001) 

Texas 

Generic dry process/ 

dense-graded  

(0.5% by wt. of 

aggregate) 

 Less propensity for rutting but possibly more 

cracking  

 Remained in discrete particles (Rebala 1995) 

Washington PlusRide 

 The performance of 7 sections ranged from 

excellent to immediate failure  

 Overall, did not improve performance (Dong 

2001) 
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In the 1960s, Charles McDonald invented a wet process that fully mixes CRM with 

asphalt binder. It now uses two production systems: continuous blend and terminal 

blend. In the former, the asphalt binder and rubber are blended in separate tanks; the 

latter uses industrial mixing plant units.  

The properties of wet-processed CRM-modified binders depend on 1) mixing 

conditions, including temperature, duration, and mixer type (Huffman 1980); 2) type 

of binder; 3) type of CRM (ambient or cryogenic, mesh size, percentage) (Hicks, 2000) 

and 4) type of additives. At high temperatures, they perform better than base asphalt 

binder. 
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Table 2-2. Some applications of wet-processed CRM asphalt mixtures by state 

State Applications Conclusions 

Alabama 

PG 67-22 +11% 

CRM (#30-40

 mesh) 

 

 After one year, rubberized and conventional mixtures 

show no practical difference in field performance 

with regard to rutting and texture (Richard 2014) 

Arizona 

Gap-graded HMA 

with 20% CRM 

 

 Asphalt rubber reduced reflective cracking and 

improved rutting performance and smoothness 

 Less average maintenance cost (George 1999) 

Arkansas 
5, 10, and 15% 

CRM 

 Increased rutting resistance  

 Resilience and tensile properties were not enhanced 

when tested at 25 ℃ 

 Performance-related properties did not differ 

significantly (Gowda 1996) 

Caltrans 

18% ± 1% 

CRM/gap and 

dense-graded 

 Over 7+ years, asphalt mixes with 15% CRM 

outperformed all other mixes in crack reflection 

mitigation (Holikatti 2013) 

Florida 10% CRM 

 Routinely used in friction courses and SAMI layers 

since 1994  

 Better resistance to rutting and cracking than that of 

unmodified binders (Page 1992) 

Illinois 

No more than 5 

pounds of CRM per 

ton of HMA 

 No substantial difference in rut values between CRM 

and control sections (Illinois DOT 2000)  

Kansas 
18% CRM 

MacDonald process 

 Rubber did not inhibit crack development in the 

higher density mixes (Fager 1992) 

 None of the rubber projects have rutted 

Louisiana 

5% Neste Wright 

Wet Process, 10% 

Rouse Wet Process, 

17% Arizona Wet 

Process, 16-mesh 

CRM 

 The conventional mixtures exhibited higher 

laboratory strength characteristics than the CRM 

mixtures  

 Better performance indices (rut depth, fatigue cracks, 

IRI numbers) than the corresponding control sections 

after 5-7 years of traffic (Huang 2002) 

Minnesota 
20%CRM 

 
 Wear courses exhibited less cracking than the control 

sections (Turgeon 1989) 

New Mexico OGFC 

 Better or comparable to conventional non-CRM 

materials  

 CRM OGFC pavements performed well in the short 

(2-4 years) and long terms (5-9 years) (Bandini 2011)  

Oregon 
ISI 

ARC/open-graded 
 Varying results (Hunt 2002) 

Pennsylvania 

Thin overlays  

Chip seals and/or 

fog seals 

 Enhanced signs of wear and cracking 

 Performance unsatisfactory in comparison to the DOT 

standard ID-2 wearing course (Lucas 1998)  

(continued on next page) 
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Table 2-2. (Continued) 

State Applications Conclusions 

Texas 

Chip seal 

SAM 

Terminal blend 

Open-graded 

 

 The mix raveled severely (Estakhri 1992) 

 SAMs exhibit improved resistance to alligator 

cracking and raveling, but resistance to shrinkage 

cracking was not improved by chip seals 

 AC-20-5TR, a terminal blend, had excellent chip 

retention and resistance to flushing and tracking  

 Most open-graded mixes improved cracking resistance 

and prevented binder drain-down in permeable mixes  

Washington 
SAM/SAMI 

OGFC 

 Did not justify the added expense of their construction 

 OGFC exhibited good-to-very-good performance, 

except for one bridge deck overlay (Swearingen 1992) 

 

 

2.2.3 Wet process, terminal blend 

Terminal blend, a type of CRM binder manufactured in an asphalt terminal, is typically 

sized to a -30 mesh, or smaller than 0.6 mm, and wet-processed to improve storage 

stability. In some systems, CRM is completely digested in asphalt binder with no 

particulate matter remaining. Sometimes, polymers are added with fine CRM, typically at 

5-10% CRM weight of total binder. Terminal blends look different from traditionally 

produced asphalt rubber binders (Fig. 2-5). 

  

 

Figure 2-5. Asphalt rubber (left); terminal blends (right) 
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2.2.4 Some applications of CRM overseas 

Since 1981, CRM technology has been widely reported in Austria, Belgium, the 

Czech Republic, France, Germany, Greece, Italy, the Netherlands, Poland, Portugal, 

Spain, Sweden, and the UK. The Czech Republic, Italy, Portugal, Spain, and Sweden 

have the greatest number of applications.  

On the basis of early positive experiences, Brazil is strongly investing CRM 

technology for road pavement (Widyatmoko 2007). In Asia, Taiwan adopted the 

Arizona DOT gap-graded and open-graded rubberized asphalt mixtures for flexible 

pavement rehabilitation (Hsu 2011), and Beijing used the technology in new and 

maintenance work to prepare for the 2008 Olympics (Bressette 2008). 

 

2.3 Mechanisms of CRM Binders 

2.3.1 Interaction between asphalt and CRM in the dry process 

In both the dry and wet processes, CR modifies the properties of the resulting binders 

(TFHRC 2005), although it is sometimes used to replace fine aggregates (Takallou 

2003; Visser 2005). In the dry process, some interaction takes place during the 

production-to-laying stages depending on CRM gradation (Buncher 1994; Green 

1997), but it was deemed insignificant compared to that in the wet process. Later 

research demonstrated a greater increase in the stiffness of dry-processed rubberized 

mixtures after short-term age conditioning compared to conventional mixtures 

(Moreno 2011; Singleton 2000). A microscopy study indicated that the 

rubber-bitumen interaction in the dry process changed the shape and porosity of CRM 

particles (Javier 2013). 

 

2.3.2 Interaction between asphalt and CRM in the wet process 
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Many studies have focused on understanding the mechanisms of CRM-asphalt binder 

interaction (Gualliard 2004; Miknis 1997; Shen & Amirkhanian 2005; Tortum et al. 

2005). It was traditionally not deemed chemical but attributed to CRM swelling as it 

absorbed the light part of the asphalt binder. Other studies claimed that the increase in 

binder viscosity could not be accounted for by rubber swelling alone (Bahia 1994). In 

fact, the main mechanism is the rubber particles’ absorption of light-weight fractions, 

which causes the residual binder to stiffen (Abdelrahman 1999; Airey 2003). Since 

the swelling process reduces the free space between rubber particles, they have less 

freedom to move into the binder matrix, causing its mass viscosity to increase with 

time.  

 

2.4 Performance Properties of CRM Asphalt and Mixtures  

2.4.1 CRM asphalt binder 

Viscosity 

The most pronounced effect of adding CRM is the increased viscosity of the CRM 

binder. Viscosity has typically been used to measure the interaction of CRM binders 

and the compatibility of different combinations of CRM and asphalt binder (Bahia
 

1994; 1995; Billiter
 
1996; Chehovit 1993; Roberts 1989; Rosner 1981; Shuler 1985; 

West 1998). While increasing a binder’s viscosity indicates better interaction and 

compatibility, the excessively high binder viscosities that may result from CR 

modification have disadvantages, including difficulty in pumping the binder and 

mixing and compacting the HMA (Oliver
 
1982). 

 

High-temperature performance 

Use of CRM in asphalt binders improves pavement properties at high temperatures. 

The dynamic shear rheometer (DSR) has been used to measure CRM binders’ 



13 

 

resistance to shear deformation (Abdelrahman
 
1999; Buncher

 
1995; Tayebali 1997). In 

general, the same factors influence both CRM binder viscosity and high-temperature 

properties. 

 

Low-temperature performance 

Using a bending-beam rheometer (BBR), CRM binders have been found less stiff and 

less likely to fail at low temperatures.  

 

2.4.2 CRM asphalt mixtures 

Dynamic Modulus 

Dynamic modulus is a key material property that determines strains and 

displacements in pavement structure (NCHRP 2003; Witczak 2002). However, few 

researchers have measured the dynamic moduli of crumb rubber asphalt mixes. 

Bennert et al. (2004) reported that the stiffness of AR-HMA was similar to that of 

PG76-22 at high test temperatures and much less at the low test temperature. Kaloush 

et al. (2003) indicated that an asphalt rubber gap-graded mix provides better 

resistance to low-temperature cracking (softer modulus at lower temperatures) and 

permanent deformation (stiffer modulus at higher temperatures). A simple 

performance test (SPT) indicated that the dynamic behavior of CRM asphalt mixtures 

was better than that of the standard asphalt mixture (Dong et al. 2012). 

 

Fatigue resistance 

Rubberized mixtures had better fatigue behavior than the control (Dong 2011; Huang 

2009; Kök 2013; Mashaan 2013; Vahidi 2014; Zeiada et al. 2012), depending on 

rubber content and gradation, aggregate gradation, mixing temperature, and curing 

time prior to compaction. Increasing an asphalt mixture’s rubber content using a 

coarse gap-graded particle size distribution resulted in better fatigue resistance than a 
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rubber-modified, dense-graded mixture (Takallou 1986). Curing conditions had mixed 

effects: some prolonged fatigue life (Pinheiro 2003; Takallou 1986); others made no 

change (Airey et al. 2003). 

 

Rutting resistance 

Research indicated in most cases that rubberized mixtures had greater rutting 

resistance than conventional control mixtures (Airey 2004; Fontes et al. 2010; Lee 

2008; Olivares 2009). 

 

2.5 Findings and Further Studies 

CRM asphalt binder is used in dry or wet processes. Among dry processes, use of the 

patented PlusRide dominated; most field observations have been negative, although 

they varied with CRM type, percentage, and mesh size. Of the many wet-processed 

rubberized asphalt mixtures, most performed better than base asphalt binder and the 

same as SBS-modified asphalt.  

The following areas where data are lacking should be studied before 

implementing CRM technology in Georgia: 

 Long-Term Pavement Performance (LTPP) for durability and aging; 

 mechanism of the CRM-asphalt binder interaction, especially in the dry process; 

 E* and fatigue performance, the key inputs for the new Mechanistic-Empirical 

Pavement Design Guide (MEPDG), for CRM asphalt mixtures; and  

 comparative performance of rubberized and traditional mixtures: dry processed, 

wet processed, and SBS-modified PEM. 
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CHAPTER 3 PROPERTIES OF RUBBERIZED BINDER 

3.1 Introduction 

The performance properties of rubberized asphalt binders depend on binder source, 

grade, manufacturing method (ambient or cryogenic), mesh size, percentage mixed, 

and mixing conditions related to temperature range, time, and agitation speed. Newer 

technologies add cross-linking agents, such as TOR, to improve stability, uniformity, 

and workability, but its influence on other properties of rubberized asphalt binder, 

such as high- and low-temperature properties and separation and aging resistance, is 

unclear. 

This chapter investigates the effect of different doses of TOR on these properties. 

PG 67-22 and PG 64-22 base asphalts were mixed with three doses of CRM and TOR. 

DSR, BBR, and separation tests were then conducted on unaged and aged rubberized 

asphalt binder to evaluate the effects (Fig. 3-1).  

 

Figure 3-1. Flow chart for testing rubberized asphalt binder properties 

 

Base Asphalt 

PG 67-22/PG 64-22 

8% CRM 

0% TOR 

Same as 3% 
TOR 

3% TOR 

PG Grade 

6.0% TOR 

Same as 3% 
TOR 

10% CRM 

Same as 8% 
CRM 

12% CRM 

Same as 8% 
CRM 
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3.2 Materials and Test Procedures 

The materials used include an ambient grind of 30-mesh CRM (Fig. 3-2 left), two 

types of base asphalt binder (PG 67-22 and PG 64-22), three doses of CRM (8%, 10%, 

12%), and three doses of TOR (0%, 3%, 6%) (Fig. 3-2 right). The rubberized asphalt 

binder was mixed at 170 °C and 900 RPM for 45 minutes in the laboratory. Table 3-1 

shows CRM gradation. 

  

Figure 3-2. CRM (left) and TOR (right) 

Table 3-1 CRM Gradations 

Sieve No. 16 No. 30 No. 50 No. 100 

Percent Passing (%) 100 99.0 40.4 7.7 

 

Aging was accelerated in the standard rolling thin-film oven (RTFO) at 163 ºC for 85 

minutes and a pressure-aging vessel (PAV) at 2.1MPa, 100 ºC for 20 hours to generate 

aged rubberized asphalt binders (Figs. 3-3; 3-4). 

The high-temperature rheological properties of each rubberized asphalt binder 

were measured using DSR (Fig. 3-5) in accordance with AASHTO T315. A 

one-millimeter gap for each was used based on NCAT Report 12-09. Each binder’s 

complex shear modulus (G*) and phase angle (δ) were measured at 76 ºC.  

BBR testing (Fig. 3-6) was used to evaluate the creep-stiffness properties of the 
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aged binder at -12 ºC in accordance with AASHTO T313. The measured creep 

stiffness and m-value were applied to describe aged rubberized asphalt binders. 

 

 

Figure 3-3. Rolling thin-film oven 

 

Figure 3-4. Pressure-aging vessel 
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Figure 3-5. Dynamic shear rheometer 

  

Figure 3-6. Bending-beam rheometer 

The separation tube test was performed to determine CRM tendency to separate 

from rubberized asphalt binder during static, heated storage. Testing was conducted in 

accordance with ASTM D7173-11, Standard Practice for Determining the Separation 

Tendency of Polymer from Polymer Modified Asphalt. Figure 3-7 shows the 

specimens. 

 

Figure 3-7. Separation tube test 
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3.3 Results and Discussion 

3.3.1 Effect of TOR on high-temperature properties 

To evaluate the performance of rubberized asphalt binder with TOR at high service 

temperatures, a complex shear modulus and phase angle were measured for both 

unaged binders and RTFO-aged residue.  

Unaged rubberized asphalt binder 

 

 
Figure 3-8. G*/sin(δ) of unaged rubberized asphalt binder at 76 ºC 

 

Figure 3-8 shows the values of G*/sin(δ) and phase angle at 76 ºC for the binders 
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tested. In general, the G*/sin(δ) of unaged rubberized asphalt binder increased with 

TOR dose, regardless of CRM dose added and grade of base asphalt binder. G*/sin(δ) 

values also increased as the CRM dose increased from 8% to 12%, regardless of TOR 

dose added and grade of the base asphalt binder (Fig. 3-8). 

Many previous laboratory and field studies have shown that rubberized asphalt 

binder generally has a higher G*/sin(δ) than base asphalt binders. Adding TOR did 

not change the trend; CRM content still increases the G*/sin(δ) of rubberized asphalt 

binder. Adding TOR only increased it further. 

For PG 67-22 asphalt with 8% CRM tested with 3% and 6% TOR, G*/sin(δ) 

values were 8.5% and 0.9% higher, respectively, than those of the controls (CRM 

asphalt binders without TOR). For those with 10% CRM, the G*/sin(δ) of binders 

tested with 3% and 6% TOR was, respectively, 17.4% and 23.0% higher than the 

controls’. For those with 12% CRM, the G*/sin(δ) of binders tested with 3% and 6% 

TOR was, respectively, 15.8% and 35.8% higher than the controls’. G*/sin(δ) 

increased, on average, 14% and 20%, respectively, with 3% and 6% doses of TOR.  

For PG 64-22 base asphalt binder, G*/sin(δ) increased on average 4.3% and 6.7%, 

respectively, with the addition of 3% and 6% TOR. Note that TOR had more influence 

on G*/sin(δ) values when a higher percentage of CRM and a high-temperature-grade 

base binder were used. 

To determine whether TOR’s effect on G*/sin(δ) was statistically significant, an 

analysis of variance was performed. Table 3-2 shows that TOR had no significant 

statistical effect on the G*/sin(δ) of any rubberized asphalt binder with PG 64-22 but 

did with PG 67-22 and higher rubber content (10% and 12%). 

 

Table 3-2. Statistical analysis of the G*/sin(δ) of unaged rubberized asphalt binders 
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Base Asphalt CRM (%) TOR 0% ~ TOR 3% TOR 0% ~ TOR 6% TOR 3% ~ TOR 6% 

PG 67-22 

8% N N N 

10% Y Y N 

12% Y Y Y 

PG 64-22 

8% N N N 

10% N N N 

12% N N N 

Note: Y: P-value < α = .05 (significant difference); N: P-value > α = .05 (no significant difference). 

   

The phase angle of the unaged rubberized asphalt binders decreased as the dose of 

TOR increased from 0% to 6%, regardless of CRM dose added or the grade of base 

asphalt binder. It also increased as CRM dose increased from 8% to 12%, regardless 

of TOR dose added and the grade of the base binders (Fig. 3-9). 

Previous studies have established that rubberized asphalt binders generally have a 

lower phase angle than base asphalt binder. However, adding TOR helps to decrease 

their phase angle. When PG 67-22 was used as the base for unaged rubberized asphalt 

binder using 8% CRM, the phase angles of the binders tested with 3% and 6% TOR 

were 1.5% and 1.0% lower, respectively, than controls’. At 10% CRM, they were 0.5% 

and 0.7% lower, respectively; and at 12% CRM, 2.7% and 3.8% lower, respectively. 

Average phase angle decreased 1.6% or 1.8% at a 3% or 6% dose of TOR.  

When PG 64-22 base asphalt binder was used, phase angles decreased an average 

of 0.5% and 0.8% at a 3% and 6% dose of TOR, respectively. Obviously, TOR had a 

greater effect on phase angle when a higher percentage of CRM was used. The grade 

of the base asphalt binder did not seem to affect the sensitivity of the phase angle of 

the rubberized asphalt binders with TOR. 

To determine whether TOR has a significant effect on the phase angle of unaged 

rubberized asphalt binders, an analysis of variance was performed. Table 3-3 indicates 

that TOR had no significant influence on binders with PG 64-22 but did with PG 

67-22 and 12% crumb rubber. 
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Figure 3-9. Phase angle of unaged rubberized asphalt binders at 76 ºC 

Table 3-3. Statistical analysis of the phase angle of unaged rubberized asphalt binders 

Virgin Binder CRM (%) TOR 0% ~ TOR 3% TOR 0% ~ TOR 6% TOR 3% ~ TOR 6% 

PG 67-22 

8% N N N 

10% N N N 

12% Y Y Y 

PG 64-22 

8% N N N 

10% N N N 

12% N N N 

Note: Y: P-value < α = .05 (significant difference); N: P-value > α = .05 (no significant difference). 

 

In addition, the fail temperature of rubberized asphalt binders increased by 

9.1-15.2 ºC and 9.4-14.0 ºC for PG 67-22 and PG 64-22, respectively, with different 

doses of CRM and TOR (Figure 3-10). At fail temperature, the G*/sin(δ) of unaged 
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asphalt binder reached 1.0 kPa. Adding 12% CRM to the binder can increase it two 

PG grades (12.0 ºC) at high temperature, regardless of the type of base asphalt. 

 

 

Figure 3-10. Fail temperature of unaged rubberized asphalt binders 

 

RTFO-aged rubberized asphalt binder 

RTFO residue showed a trend similar to that for unaged rubberized asphalt binder: the 

G*/sin(δ) increased with TOR dose, regardless of CRM dose. G*/sin(δ) values also 

increased as CRM increased from 8% to 12%, regardless of TOR dose and grade of 

base binder (Fig. 3-11).  

0

10

20

30

40

50

60

70

80

90

100

0% TOR 3% TOR 6% TOR

F
ai

l 
T

em
p

er
at

u
re

 (
ºC

) 

Rubberized asphalt binders  

8% CRM 10% CRM 12% CRM

0

10

20

30

40

50

60

70

80

90

100

0% TOR 3% TOR 6% TOR

F
ai

l 
T

em
p

er
at

u
re

 (
ºC

) 

Rubberized asphalt binders  

8% CRM 10% CRM 12% CRM

Base asphalt: PG 67-22 

Base asphalt 

Base asphalt: PG 64-22 

Base asphalt 



24 

 

 

     
Figure 3-11. G*/ sinδ of RTFO residuals at 76ºC 

 

For an RTFO-aged rubberized asphalt binder consisting of a PG 67-22 asphalt and 8% 

CRM, those tested with 3% and 6% TOR had G*/sin(δ) values 1.9% and 5.6% higher, 

respectively, than the controls’(CRM asphalt binders without TOR). For 10% CRM, 

the G*/sin(δ) values were 17.5% and 13.3% higher, and for 12% CRM, they were 2.2% 

and 5.6% higher. Average increases of 6.8% and 8.0 % in the G*/sin(δ) were found 

when 3% and 6% TOR, respectively, were added. When PG 64-22 was used, average 

G*/sin(δ) increases of 8.3% and 10.0% were found when 3% and 6% TOR, 

respectively, were added. 
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Similarly, the phase angle of RTFO-aged rubberized asphalt binder decreased as 

TOR dose increased, regardless of CRM dose and base binder grade. The phase angle 

increased as CRM dose increased from 8% to 12%, regardless of TOR dose and base 

binder grade (Fig. 3-12). 

 

 
Figure 3-12. Phase angle of RTFO residuals at 76 ºC 
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average 1.6% and 3.1% with 3% and 6% TOR doses, respectively.  

When PG 64-22 base binder was used, phase angle decreased on average 0.2% 

and 1.1% with 3% and 6% TOR doses, respectively. Obviously, TOR had a greater 

effect on phase-angle decrease at higher percentages of CRM. The grade of the base 

binder did not affect phase-angle sensitivity to TOR. 

 

3.3.2 Effect of TOR on low-temperature properties 

The BBR test is commonly used to measure the low-temperature properties of 

RTFO+PAV aged binders; that is, how much a binder deflects or creeps under a 

constant load at a constant low temperature. If creep stiffness is too high, the asphalt 

will be brittle; cracking is likely at low temperatures, and to prevent it, creep stiffness 

must be limited to 300 MPa. A high m-value is desirable because as the temperature 

drops, and thermal stresses accumulate, stiffness changes relatively quickly, and the 

binder tends to shed stresses that would otherwise lead to low-temperature cracking. 

Superpave binder specifications require a minimum m-value of 0.300.  

The creep stiffness values for all CRM asphalts with TOR (Fig. 3-13) are less than 

300 MPa, and the m-values of all CRM asphalts exceed 0.300 (Fig. 3-14). CRM 

reduces creep stiffness, but TOR increases it to some extent. 
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Figure 3-13. Creep stiffness of PAV-aged rubberized asphalt binder at -12 ºC 
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Figure 3-14. m-values of PAV-aged rubberized asphalt binder at -12 ºC 
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to some extent, TOR reduces separation severity in rubberized asphalt binder. 

 

 
Figure 3-15. Separation Tube DSR Results 
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1. Doses of 3% and 6% TOR increased the G*/sin (delta) of unaged rubberized 

asphalt binder 14% and 20%, respectively. The rate for RTFO-aged residue was 

lower. Adding TOR increased the high-temperature properties of rubberized 

asphalt binder.  

 

2. The phase angle of rubberized asphalt binder decreased up to 1.8% when TOR 

was added to both unaged binders and RTFO residue. Adding TOR to rubberized 

asphalt binder improved its elastic properties.  

 

3. The absolute difference in failure temperatures for binders taken from the top and 

bottom of a tube was about 20% less than the controls’ when a dose of 3% TOR 

was added to PG 67-22 asphalt. Increasing the TOR dose did not further decrease 

the absolute difference in failure temperatures.  

 

4. TOR had less influence on separation in PG 64-22 asphalt binder than in PG 

67-22, so it may depend on the type of base asphalt binder. 
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CHAPTER 4 DESIGN OF RUBBERIZED PEM AND SMA 

4.1 Introduction 

Porous European mix (PEM) is an open-graded surface course used by GDOT, and 

stone matrix asphalt (SMA) is gap-graded, Binders containing wet- and dry-processed 

CRM were designed.  

 This chapter evaluates the effectiveness of the design protocols applied to 

Georgia’s dry- and wet-processed PEM and SMA mixes and their performance 

properties with both dry- and wet-processed CRM binders (Fig. 4-1).   

 

Figure 4-1. Flow chart for the design of rubberized PEM and SMA 

 

4.2 Materials and Test Procedures 

Four types of asphalt binder were selected: wet-processed rubberized asphalt binder; 

dry-processed rubberized asphalt concrete mixtures; terminal blend CRM asphalt 

binder (termed hybrid binder), which uses smaller CRM particles and polymers; and 
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SBS-modified binder as a control.  

In addition, mineral and cellulose fibers (Fig. 4-1) were added at 0.4% and 0.35% 

by weight of the total mixture, respectively, to the PEM and SMA mixtures to prevent 

excessive drain-down. Note that cellulose fiber is more easily dispersed than mineral 

fiber during mixing. To prevent stripping, hydrated lime was added to all mixtures at 

1.0% by weight of the total aggregate. Furthermore, a cross-link agent (TOR polymer) 

was introduced into dry-processed rubberized HMA at 4.5% of the weight of the 

CRM. Class C fly ash was used in the SMA. Tables 4-1 to 4-4 show the properties of 

the materials tested. 

Table 4-1. Properties of materials used 

Test Item Value Test Method 

Bulk Specific Gravity 
Coarse Aggregate-A 2.597 

ASTM128 
Coarse Aggregate-B 2.607 

Apparent Specific Gravity 

Coarse Aggregate-A 2.656 

ASTM D7370 

Coarse Aggregate-B 2.656 

Fine aggregate 2.680 

Lime 2.225 

Fly Ash  2.308 

Rubber 1.177 

Flat & Elongated 

> 3:1 (%) 

Coarse Aggregate-A 8.2 
GDT 129 

Coarse Aggregate-B 9.6 

 

Table 4-2. Properties of cellulose fibers* 

Test Item Values 

Fiber Length max., in. (mm) 0.25 (6.0) 

Ash Content (%)  13.0 - 23.0 

PH  6.5 - 8.5 

Oil Absorption x fiber weight (mass)  4.0 - 6.0 

* The data are from the manufacturer, Fiberand, Inc. (Miami, FL). 
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Table 4-3. Properties of mineral fibers* 

Test Item Values 

Composition: Weight (%) 

SiO2 34-46 

Al2O3 8-15 

CaO 24-44 

MgO 4-13 

Fe2O3 0-4 

Other 0-4 

Other Properties 

PH Value 8.5 - 10.5 

Specific Gravity 2.7 - 2.9 

Fiber Diameters (µ) 4 – 6 

Fiber Length (in.) 0.25 Max 

Fiber Tensile Strength (psi) 80,000 

* The data are from the manufacturer, Fiberand, Inc. (Miami, FL). 

Table 4-4. Properties of the binders 

Aging States Test Properties 
CRM binder 

(wet process)  

Hybrid modified 

binder 

SBS modified 

binder 

Unaged Binder 
G*/sin (delta) at 76 ºC 

(kPa) 
1.46 1.73 1.58 

RTFO-Aged 

Residue 

G*/sin (delta) at 76 ºC 

(kPa) 
4.19 4.21 3.76 

PAV-Aged  

Residue 

G*·sin (delta) at 19 ºC 

(kPa) 
2733 4320 3103 

Stiffness at -12 ºC (MPa) 101.7 117.4 129.1 

m-value at -12 ºC 0.360 0.354 0.362 

 

 

Figure 4-2. Mineral fibers 
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Figure 4-3. Cellulose fibers 

 

These materials were combined to produce gradations similar to those for 

GDOT-approved mix designs. The gradations of 12.5-mm PEM and SMA (Fig. 4-4) 

were designed in accordance with Georgia mix-design procedures (Section 828), and 

the asphalt content of the PEM and SMA mixtures was optimized according to the 

requirements of GDOT 114 and GDOT 123, respectively. Both PEM and SMA 

gradations meet the control tolerances and design criteria of the Standard 

Specifications, Section 828. 

 

Figure 4-4. Aggregate gradations of PEM and SMA used for this study 
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In the wet process, rubberized asphalt binder was first produced by mixing 

-30-mesh CRM at 10% of the weight of the asphalt binder with a base binder of PG 

67-22 at 170 °C at 700 RPM for 45 minutes in the laboratory. Next, it was blended 

with the aggregates. In the dry process, the same CRM and base binder were blended 

with the aggregates and TOR polymer. 

 

4.3 Design Process  

PEM  

GDOT 114 guided the determination of optimal asphalt content (OAC) for PEM 

mixtures based on the surface-capacity (KC) method, the modified Marshall method, 

and the drain-down test. 

Surface capacity method 

In this step, 100 grams of dry aggregate (4.75-9.5 mm) were placed in the funnel and 

completely immersed in S.A.E. No. 10 oil for 5 minutes by plugging the funnel outlet. 

The aggregate was drained for 2 minutes at room temperature, then 15 minutes in a 

140 °F (60 °C) oven. The percent of oil retained (based on 100 g of dry aggregate) 

was calculated (Fig. 4-5); the KC value determined based on the KC-factor curve (Fig. 

4-6) from GDOT 114, and the asphalt content was calculated by Equation 4-1: 

Percent Asphalt = 2.0(KC) + 3.5                          4-1 
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Figure 4-5. Surface-capacity test 

 

Table 4-5 shows surface-capacity test results. The asphalt content obtained is 5.9%.  

Table 4-5. Surface-capacity test results 

Mass of Dry 

Aggregate 

(g) 

Mass of Aggregate + Oil, 

after Draining 

(g) 

Percent Oil Retained  

(%) KC Factor 

Asphalt 

Content 

 (%)  Average 

100.00 102.75 2.75 
2.735 1.20 5.9 

100.23 102.96 2.72 
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Figure 4-6. KC-factor curve (from GDOT 114) 

 

Modified Marshall Method 

Dry-processed PEM is mixed in the following steps: (1) aggregates are mixed with 

lime and water, then heated in a 100 °C oven; (2) mineral fiber is mixed with 

aggregates until the fiber separates well; (3) asphalt binder is added and mixed until it 

coats the other ingredients; and (4) a blend of CRM and TOR is added uniformly. The 

steps in mixing wet-processed PEM, SBS, and hybrid PEM are as follows: (1) 

aggregates are mixed with lime and water, and then heated in a 100 °C oven; (2) fiber 

is mixed with aggregates until it separates well; and (3) modified binder 

(wet-processed CRM, SBS, or hybrid) is added and mixed until the aggregates are 

well-coated.  

In the modified Marshall test, the aggregates were preheated for 5 hours in a 

135 °C oven, then mixed with one of three asphalt binders whose asphalt content was 

set at the 0.5% intervals closest to the AC established in the KC method. The samples 

were compacted with 25 blows on each side at 120 °C. Their bulk specific gravity 
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(Gmb) was determined using Equation 4-2: 

  

𝐺𝑚𝑏 =
𝑊

(𝜋𝑟2ℎ)

0.9970

=
(𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔))(0.0048417)

𝐻𝑒𝑖𝑔ℎ𝑡
           4-2 

    where: 

    W = specimen weight in grams; 

    r = specimen radius in centimeters; 

    h = specimen height in centimeters; and 

    0.99707 = density of water at 77 °F (25 °C). 

 

Maximum specific gravity (𝐺𝑚𝑚) was measured according to AASHTO T 209. 

Air void (AV) content was calculated from mixture bulk and theoretical maximum 

specific gravity. Voids in the mineral aggregate (VMA) are the volume of voids and 

effective binder (VB) in a compacted HMA. Voids filled with asphalt (VFA) are the 

percentage of VMA filled with binder. The asphalt content at the lowest point on the 

VMA curve represented maximum specific gravity. 

Table 4-6 summarizes the asphalt content at the lowest VMA point for four PEM 

mixtures. Figure 4-7 shows the relationships between asphalt-binder content and 

VMA for the four mixtures as determined by the modified Marshall test. AC was 

determined as the value at which VMA reached the lowest point on the curve plot. 

 

Table 4-6. Asphalt content as determined by the modified Marshall method 

PEM Type Asphalt content at the lowest point of VMA (%) 

Dry Process 6.1 

Wet process 6.6 

SBS 6.0 

Hybrid 6.0 
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Figure 4-7. VMA curves for PEM 

 

Drain-down test 

The amount of drain-down in uncompacted PEM mixtures was determined in 

accordance with GDOT 127 and uses the average AC determined by the two methods 

above. For each mixture, two replicates were used. Approximately 1,200 grams of 

loose mixture were transferred to the tarred test basket, which was placed on a foil 

pan and into an oven set at 177 ± 2 °C. After an hour, drain-down was calculated. If it 

was greater than 0.3% by the weight of total mixture, the fiber content was increased 

0.1%, and the tests detailed above were repeated. 

 Table 4-7 shows the results of drain-down testing for the PEM mixture samples. 

All met the 0.3% criterion. Hybrid and SBS PEM had slight drain-down; both dry- 

and wet-processed rubberized PEM had none. The OACs for the four PEM mixtures 

were determined by the three tests above and field experience. The asphalt content of 

wet-processed rubberized PEM was adjusted to 6.5% based on field experience. Table 
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4-8 presents the OAC and other volumetric properties of the four PEM. 

Table 4-7. Results of drain-down testing 

Mix Type Asphalt Content for Drain-down Test (%) Drain-down (%) 

Dry process 6.0 0.00 

Wet process 6.3 0.00 

SBS 6.0 0.08 

Hybrid 6.0 0.04 

 

Table 4-8. Volumetric properties of PEMs 

Mix Type 
OAC (%)  Gmm Gmb AV (%)  VMA (%) VFA (%) 

Dry Process  6.0 2.406 1.955 18.7 29.3 36.1 

Wet process 6.5 2.402 1.962 18.3 29.5 37.8 

SBS  6.0 2.427 1.948 19.7 29.6 33.3 

Hybrid  6.0 2.420 1.942 19.8 29.8 33.6 

Note: OAC = optimal asphalt content; Gmm = maximal specific gravity; Gmb = bulk specific gravity; 

AV = air voids; VMA = voids in mineral aggregate; VFA = voids filled with asphalt. 

 

Based on these tests, the final OAC was 6.5% for wet-processed rubberized 

mixtures and 6.0% for all others (Table 4-8). Note that the OAC for wet-processed 

mixtures is 0.5% higher than that for the dry-processed, but the asphalt binder used in 

the wet process contained CRM. In other words, the actual asphalt content added to 

the two mixtures is very similar. 

 

SMA 

GDOT 123 was followed to determine the OAC for the SMA mixtures. Marshall 

samples were compacted with 50 blows on each side at 160 °C. The 𝐺𝑚𝑏 of the 

compacted samples was measured in accordance with AASHTO T 166. 𝐺𝑚𝑚 was 

measured according to AASHTO T 209.  

To determine the OAC, each SMA mixture was tested at three asphalt levels based 

on field experience: 5.5%, 6.0%, and 6.5% for dry-processed, hybrid, and SBS- 
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modified SMA; 6.5%, 7.0%, and 7.0% for wet-processed. The volumetric properties 

of each were measured, and OAC determined to ensure that the AV, VMA, and VFA 

satisfied the design criteria of Standard Specifications Section 828 (AV: 3.5±0.5%; 

VMA>17.0%; VFA: 70-90%) and that each yielded 3.5% air voids using a 50-blow 

Marshall hammer (Fig. 4-8). Table 4-9 presents the volumetric properties for all SMA 

mixtures at OAC. 

    

     

Figure 4-8. AV curves for SMA 

Table 4-9. Volumetric properties of SMA mixtures 

Mix Type OAC (%)  Gmm  VMA (%) VFA (%) 

SMA 

Dry Process  6.3 2.396 17.9 77.0 

Wet process 6.9 2.398 17.8 77.1 

SBS  6.4 2.412 18.0 71.9 

Hybrid  6.3 2.405 17.6 75.9 

Note: OAC = optimal asphalt content; Gmm = maximal specific gravity; AV = air voids; VMA = voids 

in mineral aggregate; VFA = voids filled with asphalt. 

 

Dry process Wet process 

Hybrid SBS 
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4.4 Design Validation by Selected Mixture Properties   

Selected properties, such as rutting resistance, moisture susceptibility, and drain-down, 

were tested to validate the PEM and SMA mixture designs. 

 

Specimen fabrication 

Aggregates and asphalt binders were heated in the oven for 5 hours before mixing at 

165.5 ± 3 °C. Samples were aged in a forced-draft oven for 2 h ± 5 minutes before 

compaction to simulate short-term aging and stirred every 60 ± 5 minutes to maintain 

uniform conditioning. They were then compacted using a Superpave gyratory 

compactor (SGC) at 160 ± 3 °C. Samples that met the height requirement were 

allowed to cool for at least 45 minutes prior to extraction from the mold.  

 

Rutting Resistance 

Rutting resistance of the PEM and SMA mixtures was evaluated using an asphalt 

pavement analyzer (APA) (Fig. 4-11) following GDOT 115. Six replicates with air 

voids of 17 ± 1% (PEMs) or 5 ± 1% (SMAs) at 64 °C were loaded by a 100-pound 

steel wheel on a pneumatic hose at 100 psi of pressure for 8,000 cycles. 

 

Figure 4-9. APA Test 
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Figures 4-10 and 4-11 show the results. Note that PEM rutting was most 

significant (3.2 mm) in the wet-processed samples and least significant in the hybrid 

samples (2.1 mm). The SBS and dry-processed samples had rutting depths of 2.65 

mm and 2.56 mm, respectively. For SMA samples, rutting was most significant in dry 

processed (2.40 mm) and least significant in wet processed (1.68 mm). Hybrid and 

SBS samples were nearly identical, with 2.08 mm and 2.14 mm rut depths, 

respectively.  

 
Figure 4-10. PEM average rut depths 

 

 
Figure 4-11. SMA average rut depths 
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The Hamburg wheel-tracking device (HWTD) is widely used to investigate HMA 

susceptibility to moisture damage. A retrofitted APA test was used to evaluate the 

moisture-damage susceptibility of warm mix asphalts, finding a significant linear 

correlation with rutting rates (Brandon et al. 2014), although these results were not 

reliable due to an unstable steel wheel.  

Since our asphalt lab had no HWTD at the time of the project, we performed the 

retrofitted APA test based on AASHTO T-324 (Fig. 4-12). Steel wheels, 1.85 inches 

wide with an 8-inch diameter, made 52 ± 2 passes across the specimen per minute. 

The load on each wheel was 158 ± 1.0 lb. Linear variable differential transformers 

(LVDTs) measured rut depth or deformation at 5 points along the length of each 

specimen.  

    

Figure 4-12. Retrofitted APA testing 

 

Figures 4-13 and 4-14 show the results for PEM and SMA samples. Rutting depth 

for dry-processed rubberized PEM was highest (12.1 mm), followed by wet-processed 

(10.2 mm). Hybrid and SBS PEM had the lowest rutting depth (5.6 mm and 5.5 mm). 
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Again, GDOT does not specify rutting performance for PEM mixtures, so we have no 

criterion, but the test results do tell us the influence of different asphalt binders on 

rutting. No PEM exhibited a stripping inflection point, suggesting that after 20,000 

wheel passes, no sample had significant moisture damage. In addition, all PEM 

samples met the criterion of a rutting depth of 12.5 mm after 20,000 passes, a trend 

similar to that found using SMA retrofitted APA testing (Figure 1-14). 

 
Figure 4-13. Results of retrofitted APA testing for PEM 

    

Figure 4-14. Results of retrofitted APA testing for SMA 
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The amount of drain-down in uncompacted PEM and SMA was determined in 

accordance with GDOT 127. For each mixture, two replicates were used. 

Approximately 1,200 grams of loose mixture were transferred to the tarred test basket 

and placed in a foil pan for transfer into a 177 °C ± 2 °C oven (Fig. 4-15).  

 

Figure 4-15. Drain-down testing 

After one hour, drain-down was calculated using Equation 4-3:  

D = 100 (Pf – Pi)/M           4-3 

 where   

 Pi = initial paper-plate mass (grams); Pf = final paper-plate mass (grams);  

 M = mix mass (grams); D = % drain-down 

Table 4-10 shows the results of drain-down testing for the PEM and SMA samples, 

which all met the 0.3% criterion. The SBS and hybrid PEM mixtures had some 

drain-down while the others had none. 

Table 4-10. Results of drain-down testing 

Mix Type Drain-down (%) 

PEM 

Dry process 0.00 

Wet process 0.00 

Hybrid 0.04 

SBS 0.08 
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SMA 

Dry process 0.00 

Wet process 0.00 

Hybrid 0.00 

SBS 0.00 

 

4.5 Summary and Conclusions for Mix Design Verification 

The volumetric properties of both PEM and SMA mixed with wet- and dry-processed 

CRM, hybrid, and SBS-modified asphalt binders were evaluated according to GDOT 

114 and 123. The designs were also validated by testing their rutting resistance, 

moisture susceptibility, and drain-down. The following conclusions were drawn: 

1. By following GDOT 114 and 123, respectively, PEM and SMA mixtures can be 

successfully designed to incorporate CRM, hybrid, or SBS-modified binders. 

Volumetric properties met GDOT requirements.  

 

2. Rutting resistance was best in hybrid PEM mixtures, although similar for SBS and 

dry-processed PEM mixtures. Wet-processed samples showed the least rutting 

resistance. GDOT does not perform a rutting test on PEM, so there is no criterion. 

 

3. For SMA, rutting resistance was least in dry-processed and most in wet-processed 

samples. Hybrid and SBS samples were nearly identical, with 2.08 mm and 2.14 

mm rut depths, respectively. All rutting values were much below the state’s 5 mm 

limit. 

 

4. Using the retrofitted APA test, no inflection stripping point was found for all four 

PEMs and SMAs, indicating that their designs passed the moisture-susceptibility 

requirement. 

 

5. All PEMs and SMAs met the 0.3% drain-down criterion. 
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CHAPTER 5 DYNAMIC MODULUS OF RUBBERIZED 

PEM AND SMA 

5.1 Introduction 

Dynamic modulus, |E*|, is a key input parameter in the MEPDG, and a 

comprehensive database of dynamic moduli would help to ensure that designers select 

cost-effective local materials for successful MEPDG implementation. However, few 

have investigated the dynamic moduli of dry-processed rubberized PEMs and SMAs 

as compared to their wet-processed and SBS-modified analogues. PEM dynamic 

moduli remain generally overlooked since PEM is normally paved in a thin layer that, 

while not a structural layer, still contributes, more or less, to structural performance.  

We examined the dynamic moduli of rubberized PEMs and SMAs and the 

influence of introducing dry- and wet-processed CRM. The test scope included two 

types of aggregate gradation (PEM and SMA), four types of modified binders (dry- 

and wet-processed CRM, SBS-modified, and a hybrid combining CRM and SBS), 

and a typical aggregate granite used by GDOT. Table 5-1 shows the types of data 

collected. Figure 5-1 presents a flow chart of testing. E* were measured at different 

temperatures and frequencies, according to AASHTO 13 TP79-12. 

Table 5-1. Dynamic modulus test matrix 

Temperature 

(ºC) 

Frequency 

(Hz) 

Mixes 

Dry process Wet process Hybrid SBS 

  PEM SMA PEM SMA PEM SMA PEM SMA 

4 
10, 1, 

0.1 
√ √ √ √ √ √ √ √ 

20 
10, 1, 

0.1 
√ √ √ √ √ √ √ √ 

45 
10, 1, 

0.1,0.01 
√ √ √ √ √ √ √ √ 

 



49 

 

 

Figure 5-1. Flow chart for determining the dynamic moduli of rubberized PEM and 

SMA 

 

5.2 Materials and Test Procedures 

Four asphalt binder types were selected: wet- and dry-processed rubberized, hybrid 

(CRM and SBS combined), and SBS-modified (control) asphalt binders. Tables 4-1 to 

4-4 provided detailed information on, and properties of, the materials. 

The short-term aged mixtures were compacted by the Superpave gyratory 

compactor to obtain the required air voids, which were measured for each specimen. 

PEM air voids are measured using the Corelok method. All the PEM and SMA 

mixture specimens used in this study had target air voids of 17±0.5% and 5±0.5%, 

respectively. Note that laboratory experiment indicates that a 17% air void as 

measured by the Corelok method is close to 19% as measured by dimensional 

analysis. Next, a coring rig was used to obtain the required 100-mm diameter by 

150-mm tall specimens, which were conditioned in an environmental chamber to 

reach the test temperature mandated by AASHTO 13 TP79-12. Three replicate 

specimens at the target air-void level were tested at four loading frequencies (0.01 Hz, 

PEM/SMA 
Mixtures 

Control 

(PMAC) 

Same as Dry 
Process 

Dry  

Process 

Dynamic 
Modulus 

Wet  

Process 

Same as Dry 
Process 

Hybrid 

Same as Dry 
Process 
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0.1 Hz, 1 Hz, 10 Hz) for 18 hours at 4 °C, 3 hours at 20 °C, and 3 hours at 45 °C. 

  

Figure 5-2. Gyratory compaction of PEM and SMA specimens 

 

   

Figure 5-3. Specimen coring and cutting 

 

Dynamic modulus testing was conducted for each PEM and SMA mixture with an 

IPC Global - Asphalt Mixture Performance Tester (AMPT). The axial deformation 

value was measured with three spring-loaded linear variable differential transducers 

(LVDTs) placed vertically on diametrically opposed sides of the specimen (Fig. 5-3). 

Stress-versus-strain values were captured continuously, and the testing software used 

them to calculate dynamic modulus values. 
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Figure 5-4. Dynamic modulus samples and conditioning 

  

   

Figure 5-5. AMPT device and instrumentation 

 

5.3 Results and Discussions 

5.3.1 PEM dynamic modulus and phase angle 

Dependence of dynamic modulus on temperature  

Figures 5-6 to 5-8 present the relationships between dynamic modulus and 

temperature. Note that the slopes of the |E*|-temperature curves of dry-processed 

rubberized PEM mixture are a little steeper than those of the other three PEM 

mixtures as testing temperature increased from 4 °C to 20 °C, indicating that the 

temperature sensitivity of its dynamic modulus was slightly higher than that of the 

other PEM. On the other hand, as the testing temperature increased from 20 °C to 

45 °C, the |E*|-temperature curves of all PEM mixtures had similar slopes. 

In addition, the dynamic moduli of all PEM mixtures significantly decreased with 

increased test temperature, indicating that they were highly dependent on temperature. 
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For example, when the loading frequency was 10 Hz, the |E*| for all PEM mixture 

asphalt binder types at 45 °C was 90-92% lower than at 4 °C. 

 
Figure 5-6. PEM dynamic modulus vs. temperature at 10 Hz 

 
Figure 5-7. PEM dynamic modulus vs. temperature at 1 Hz  
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Figure 5-8. PEM dynamic modulus vs. temperature at 0.1 Hz 

 

Dynamic modulus dependence on load frequency  

Figures 5-9 to 5-11 present the relationships between dynamic modulus and load 

frequency. Under a constant test temperature, the dynamic moduli of all PEM 

mixtures increased with load frequency.  

Figures 5-9 to 5-11 show that dry-processed rubberized PEM had a slightly higher 

dynamic modulus than the other PEM mixtures at 4 °C, but it was similar to the others 

at 20 °C, regardless of test frequency. The slopes of the |E*|-frequency curves of 

dry-processed rubberized PEM are similar to those of the other PEMs at 4 °C and 

20 °C, indicating that the sensitivity of their dynamic modulus to load frequency 

grows similar as the test temperature lowers. The slopes of the |E*|-frequency curves 

of the dry-processed rubberized PEM were slightly higher than those of the 

wet-processed and SBS-modified PEM mixtures with higher load frequency (1 Hz 

and 10 Hz) but slightly lower than that of the hybrid PEM mixture at 45 °C. 
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Figure 5-9. PEM dynamic modulus vs. frequency at 45 °C 

 

 
Figure 5-10. PEM dynamic modulus vs. frequency at 20 °C 

 

 
Figure 5-11. PEM dynamic modulus vs. frequency at 4 °C 
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Phase angle dependence on temperature  

Phase angle was obtained simultaneously with |E*|. The time lag between the applied 

stress and resulting strain is defined as phase angle δ. This parameter determines the 

elastic or viscous properties of asphalt mixes. A small phase angle indicates greater 

elasticity. 

 Figures 5-12 to 5-14 present the relationships between phase angle and 

temperature in the samples. Generally, the phase angle of all PEM mixtures increases 

with the increase in test temperature when loading frequency exceeds 0.1 Hz. Thus, 

higher temperatures enhance PEM mixtures’ viscosity, increasing their deformation. 

For instance, when loading frequency was 10 Hz, the average phase angle of dry- and 

wet-processed rubberized, hybrid, and SBS-modified PEM mixtures at 45 °C were 

235%, 213%, 230%, and 194% higher, respectively, than those at 4 °C. However, at a 

lower load frequency (0.1Hz), the PEM mixture’s phase angle increase was 

significantly lower and even decreased as the test temperature increased from 20 °C to 

45 °C (Fig. 5-14). Dry-processed rubberized PEM’s phase angle was slightly higher 

than the other PEMs’ at 45 °C; similar to those of hybrid and SBS-modified PEM at 

20 °C; and slightly lower than hybrid and SBS-modified PEM at 4 °C. 

 
Figure 5-12. PEM phase angle vs. temperature at 10 Hz  
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Figure 5-13. PEM phase angle vs. temperature at 1 Hz  

 
Figure 5-14. PEM phase angle vs. temperature at 0.1 Hz  

 

Phase angle dependence on load frequency  

Figures 5-15 to 5-17 present the relationships between phase angle and load frequency. 

At 4 ºC and 20 ºC, the phase angles of all PEM samples decrease with increased load 

frequency; for 45 °C, the phase angles increase as the test frequency increases from 

0.01 Hz to 1Hz and decrease slightly as it increases from 1 Hz to 10Hz, except for 
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PEM mixtures, while slightly lower than SBS-modified PEM at 4 °C. Its sensitivity to 

load frequency is similar to the others’ at 4 °C and 20 °C.  

 
Figure 5-15. PEM phase angle vs. frequency at 45 °C 

 
Figure 5-16. PEM phase angle vs. frequency at 20 °C  
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Figure 5-17. PEM phase angle vs. frequency at 4 °C 

 

Master curve of dynamic moduli 

Master curves of asphalt mixtures allow performance comparisons over extended 
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time-temperature superposition principle, which allows test data collected at different 

temperatures and frequencies to shift horizontally relative to a reference temperature 

or frequency, thereby aligning the various curves to form a single master curve. In this 

study, master curves for the dynamic moduli of all mixtures were constructed at the 

reference temperature of 70 °F (21 °C). 

The construction of dynamic modulus master curves using the AMPT is 

standardized in AASHTO PP61. Dynamic modulus data were collected at three 

temperatures and four frequencies. A sigmoidal model (Eq. 5-1) was used to describe 

the master curves. A nonlinear analysis was performed using an available 

optimization routine (Microsoft Excel™) to obtain the model parameters of the 

master curve by minimizing the sum of the squares of error between the predicted and 

measured values. These master curves (Fig. 5-18) show no major difference in 

dynamic modulus over the entire range of frequencies for four different asphalt 
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mixtures, although it was slightly lower for dry-processed rubberized PEM than the 

three other mixes when the test frequency was lower.  

                                         log( |𝐸∗|) = 𝛿 +
𝛼

1+𝑒[𝛽+𝛾(log 𝑓𝑟)]    5-1                               

where fr = loading frequency at the reference temperature; δ =minimum value of 

dynamic modulus; δ +α = maximum value of dynamic modulus; and β, γ = parameter 

describing the shape of the sigmoidal function.  

 
Figure 5-18. Master curves of PEM dynamic moduli  

 

To determine whether dry-processed rubberized PEM performs as well as the 

other three PEM mixtures with regard to dynamic modulus, an analysis of variance 
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Table 5-2. Statistical analysis of PEM dynamic modulus  

Test Condition Dry Process~ Wet Process Dry Process~ Hybrid  Dry Process~ SBS 

4 ℃, 10 Hz N N N 

4 ℃, 1.0 Hz N N N 

4 ℃, 0.1 Hz N N N 

20 ℃, 10 Hz N N N 

20 ℃, 1.0 Hz N N N 

20 ℃, 0.1 Hz N N N 

45 ℃, 10 Hz N N N 

45 ℃, 1.0 Hz N N N 

45 ℃, 0.1 Hz N N N 

45 ℃, 0.01 Hz N N N 

Note: Y: P-value < α = .05 (significant difference); N: P-value > α = .05 (no significant difference). 

 

Master curve of phase angles 

The master curve of the phase angles of four PEM mixtures (Fig. 5-19) shows that the 

phase angle decreases as the reduced frequency increases beyond 0.01 Hz and 

exhibits the opposite trend at less than 0.01 Hz. Asphalt binder softens as the 

temperature increases, and aggregate interlocking significantly overtakes its 

rheological behavior. 

At higher frequencies (equivalent to low test temperatures), the phase angles of the 

dry- and wet-processed rubberized, and hybrid-modified PEM mixtures are similar 

and slightly lower than that of SBS-modified PEM. At lower frequencies (equivalent 

to high test temperatures), the phase angles of dry- and wet-processed rubberized 

PEM mixes are similar and higher than those of hybrid and SBS-modified PEM 

mixtures, suggesting that they may be less elastic and more viscous than hybrid and 

SBS-modified PEM at higher temperatures. 
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Figure 5-19. Master curves of PEM phase angles 

 

5.3.2 SMA dynamic modulus and phase angle 

Dynamic modulus dependence on temperature and load frequency  

Figures 5-20 to 5-25 show the dynamic modulus test results for all SMA mixtures. As 

expected, they were significantly lower as testing temperature increased and loading 

frequency decreased. They were similar for all SMA samples at 4 and 20 ºC. Both 

dry- and wet-processed rubberized SMA mixtures exhibited a slightly lower dynamic 

modulus at low frequency and high temperature (0.01 or 0.1Hz at 45 °C). 

 
Figure 5-20. SMA dynamic modulus vs. temperature at 10 Hz  
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Figure 5-21. SMA dynamic modulus vs. temperature at 1 Hz  

 
Figure 5-22. SMA dynamic modulus vs. temperature at 0.1 Hz  

 
Figure 5-23. SMA dynamic modulus vs. frequency at 45 °C  
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Figure 5-24. SMA dynamic modulus vs. frequency at 20 °C  

 
Figure 5-25. SME dynamic modulus vs. frequency at 4 °C  

Master curve of dynamic moduli 

Master curves of dynamic moduli at 21 °C were plotted (Fig. 5-26). They were similar 

at higher frequency, but dry- and wet-processed SMA mixtures had slightly lower 

values than hybrid and SBS-modified SMA mixtures at reduced frequency. To 

determine whether the difference between the E* of dry-processed SMA and those of 

other three SMA mixtures was significant, a statistical F-test of variance at the 5% 

significance level was performed (Table 5-3). Results showed that the dynamic 
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Figure 5-26. Master curves of SMA dynamic modulus 

 

Table 5-3. Statistical analysis of SMA dynamic modulus 

 dry ~ wet process dry process ~ Hybrid  dry process ~ SBS 

4 ℃, 10 Hz N N N 

4 ℃, 1.0 Hz N N N 

4 ℃, 0.1 Hz N N N 

20 ℃, 10 Hz N N N 

20 ℃, 1.0 Hz N N N 

20 ℃, 0.1 Hz N N N 

45 ℃, 10 Hz N N N 

45 ℃, 1.0 Hz N N N 

45 ℃, 0.1 Hz N N N 

45 ℃, 0.01 Hz N N N 

Note: Y: P-value < α = 0.05 (significant difference); N: P-value > α =0 .05 (no significant difference). 

 

Dynamic modulus dependence on temperature and load frequency  
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Figures 5-27 to 5-32 show the phase angle results for four SMA mixtures. They 

were similar at 4 and 20 °C, while dry-processed rubberized SMA’s was slightly 

higher at high temperature (45 °C) than the others’, regardless of load frequency. 

Furthermore, the phase angle of the dry- and wet-processed modified SMA mixes at 

10 Hz and 1 Hz increased at a slightly higher rate than those of the hybrid and 

SBS-modified SMA mixtures as the testing temperature increased from 20 to 45 °C. 

At 10 Hz and 1 Hz, the phase angle of all SMA mixtures increased significantly with 

the testing temperature. At 0.1 Hz, the phase angle of hybrid and SBS-modified SMA 

mixtures decreased slightly and those of the dry- and wet-processed rubberized SMA 

increased slightly as the testing temperature increased from 20 to 45 °C.  

Figures 5-31 to 5-32 reveal that at 4 and 20 ºC, the phase angles of all SMA 

samples decreased with increased frequency, while at 45 °C, they increased.  

 
Figure 5-27. SMA phase angle vs. temperature at 10 Hz 
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Figure 5-28. SMA phase angle vs. temperature at 1 Hz  

 
Figure 5-29. SMA phase angle vs. temperature at 0.1 Hz  

 
Figure 5-30. SMA phase angle vs. frequency at 45 °C  
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Figure 5-31. SMA phase angle vs. frequency at 20 °C  

 
Figure 5-32. SMA phase angle vs. frequency at 4 °C  

A statistical F-test of variance at the 5% significance level was conducted for the 

phase angle of the four SMA mixtures (Table 5-4). Results revealed that the phase 

angle of dry-process modified SMA did not differ significantly from the others’, 

regardless of test frequency and temperature.  
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Table 5-4. Statistical analysis of SMA phase angle 

 
Dry Process~ Wet 

Process 
Dry Process~ Hybrid  Dry Process~ SBS 

4 ℃, 10 Hz N N N 

4 ℃, 1.0 Hz N N N 

4 ℃, 0.1 Hz N N N 

20 ℃, 10 Hz N N N 

20 ℃, 1.0 Hz N N N 

20 ℃, 0.1 Hz N N N 

45 ℃, 10 Hz N N N 

45 ℃, 1.0 Hz N N N 

45 ℃, 0.1 Hz N N N 

45 ℃, 0.01 Hz N N N 

Note: Y: P-value < α = .05 (significant difference); N: P-value > α = .05 (no significant difference). 

 

5.4 Summary and Conclusions on Dynamic Modulus 

The effect on the dynamic modulus of modifying PEM and SMA mixtures four 

different ways was examined and found: 

1. The dynamic moduli of all PEM and SMA mixtures decreased as test 

temperature increased when loading frequency was constant and increased 

with test frequency when the temperature was constant.  

2. Both PEM and SMA mixtures’ phase angles increased as test temperature 

increased at a constant loading frequency. They decreased at 4 and 20 °C but 

increased at 45 °C when test frequency increased at constant temperature.  

3. Dynamic moduli did not differ significantly over the entire range of 

frequencies for the four PEM mixtures. In other words, PEM mixes modified 

using dry-processed CR performed as well as those with wet-processed CR, 
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hybrid binders, and SBS control mixtures in terms of E*. These trends held for 

all the SMA mixes. 

4. According to the dynamic modulus master curve, dry-processed rubberized 

PEM and SMA mixtures were similar to the other three PEM and SMA 

mixtures at higher frequency. However, their dynamic modulus values were 

slightly lower than those of hybrid and SBS-modified SMA mixes at lower 

frequency (higher temperature). 
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CHAPTER 6 FATIGUE LIFE OF RUBBERIZED PEM 

AND SMA 

6.1 Introduction 

Introducing crumb rubbers into asphalt mixtures has improved their fatigue 

performance (Huang 2002). Accurate description and prediction of fatigue resistance 

in rubberized asphalt mixtures are extremely important to flexible pavement design 

and preservation, but research was limited, and how the differences in dry and wet 

methods for introducing CRM affect the fatigue performance of PEM and SMA 

mixtures was unclear. A study comparing their fatigue performance was needed.  

Fatigue tests can be classified as phenomenological or mechanistic. The 

phenomenological approach, such as the flexural beam fatigue test, is empirical and 

can introduce large errors when used to predict material performance. Mechanistic 

approaches, such as the simplified viscoelastic continuum damage (S-VECD) model, 

are more theoretically rigorous and can effectively predict the fatigue life of asphalt 

mixtures under different test temperatures and loading conditions. 

The aims of this study were to (1) use the S-VECD model to investigate the 

fatigue performance of dry-processed rubberized PEM and SMA mixtures and other 

typical PEM and SMA mixtures, such as wet-processed, terminal blend hybrid, and 

SBS-modified; and (2) explore the influence on fatigue performance of introducing 

CRM by the wet or dry process. Figure 6-1 is a flow chart of the study’s scope. 
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Figure 6-1. Flow chart for determining the fatigue life of rubberized PEM and SMA 

 

6.2 Specimen Fabrication and Test Procedures 

Specimen Fabrication 

Specimens for the E* test were prepared as follows: Aggregates and binders were 

preheated in the oven for 5 hours before mixing at 165.5 ± 3 °C. The samples were 

placed in a forced-draft oven for 2 h ± 5 minutes before compaction to simulate 

short-term aging and stirred every 60 ± 5 minutes to maintain uniform conditioning. 

They were then gyrator-compacted at 160± 3°C.  

Before proceeding to testing, each specimen’s air void was measured. All PEM 

and SMA specimens used in this study have target air voids of 17.0 ± 0.5% and 5.0 

± 0.5%, respectively. Specimens were conditioned in an environmental chamber for 

3 hours to reach the test temperature of 17 °C. 

For the uniaxial constant crosshead (CX) fatigue test, specimen dimensions were 

100 mm in diameter x 130 mm in height. They were glued to two end plates using a 

steel epoxy and a special gluing jig to eliminate any eccentricity. 
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Figure 6-2. Specimen fabrication 

 

S-VECD Direct Tension Fatigue Test 

This test, also called the uniaxial constant crosshead (CX) or pull-pull fatigue test, 

was performed to characterize the mixtures’ fatigue performance. The machine 

actuator’s displacement was programmed to reach a constant peak at each loading 

cycle. Due to machine compliance, the on-specimen strain measurements follow a 

power curve until failure, so the specimen does not experience a true controlled-strain 

or controlled-stress loading mode but rather a mixed mode. A true on-sample 

controlled strain or stress test using cylindrical specimens is difficult to run and can 

damage equipment if improperly performed (Hou 2009).  

The effect of viscoplastic strain during the CX test was evident as the test 

temperature increased but negligible as it decreased: the softer the binder, the lower 

the test temperature. Sabouri and Kim (2014) suggested that a proper CX testing 
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temperature can be determined based on the PG of the binder (Eq. 6-1). The proper 

test temperature for the PG 67-22 and PG 76-22 used in this study would be lower 

than 19 °C, according to Eq. 6-1. However, a much lower test temperature may cause 

the samples to become brittle. Thus, a proper test temperature should be able to 

characterize viscoelastic damage when a material is not as brittle as it would be at a 

lower temperature and the effect of viscoplasticity is negligible (Hou 2009). Based on 

these considerations, 17 °C was selected as the CX test temperature in this study. 

 (6-1) 

Prior to the CX test, a small strain (50-75 on-specimen microstrain) was applied to 

determine the fingerprint dynamic modulus (|E*|Fingerprint), and Equation 6-2 was used 

to calculate the dynamic modulus ratio (DMR). A DMR value in the range of 0.9 to 

1.1 guarantees that the linear viscoelastic properties obtained from the dynamic 

modulus tests can be used effectively in S-VECD analysis (Hou 2010). A target 

peak-to-peak on-specimen strain without adaptive strain control was then input to 

obtain the target actuator peak-to-peak strain or displacement used to control the 

entire fatigue test. The number of cycles at failure (Nf) was defined as the cycle at 

which the phase angle decreases sharply as a result of macro crack localization (Hou 

2009). 

   𝐷𝑀𝑅 =
|𝐸∗|𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡

|𝐸∗|𝐿𝑉𝐸
                       (6-2) 

Where, |E*|LVE is the linear viscoelastic dynamic modulus of the material at the 

particular temperature and frequency of the test. 

The CX tests in this study were performed at 17 °C at a frequency of 10 Hz with 

an AMPT. Four to six replicate specimens at a target air void were measured at three 

strain amplitudes (high, medium, low) to produce a wide range of Nf (from 1,000 to 

100,000). The data were analyzed using the fatigue analysis software developed at 
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North Carolina State University. 

6.3 Results and Discussions 

6.3.1 PEM Fatigue Performance 

The S-VECD model can predict asphalt mixtures’ fatigue life at various temperatures 

and strain/stress amplitudes based on the cyclic fatigue data at a single temperature 

and a single stress or strain amplitude. Figures 6-3 and 6-4 show the fatigue life at 5, 

10, and 20 °C and 10 Hz loading frequency.  

According to the strain-controlled simulation results (Figure 6-3), the difference 

between the fatigue life of the dry- and wet-processed CRM PEM mixtures was 

negligible, although the fatigue life of the dry-processed PEM mix was slightly lower 

than that of the wet-processed mixture as the temperature increased. However, both 

dry- and wet-processed CRM PEM mixtures had significantly lower fatigue life 

compared to hybrid and SBS-modified PEM mixtures, regardless of the temperature 

or strain levels. In addition, hybrid PEM mixes had a slightly longer fatigue life at 

lower temperatures and higher strain levels than SBS-modified PEM mixes, but this 

advantage disappeared as the temperature increased or the strain level decreased. 

Findings for the strain-controlled simulation hold true for the stress-controlled 

simulation (Figure 6-4).  

Overall, the fatigue performance of the dry- and wet-processed CRM PEM mixes 

was similar but significantly worse than that of the hybrid and SBS-modified PEM 

mixes, which was similar. 
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Figure 6-3. PEM fatigue life under strain control 
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Figure 6-4. PEM fatigue life under stress control 
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6.3.2 SMA Fatigue Performance 

Figures 6-5 and 6-6 show the fatigue life of strain- and stress-controlled samples, 

respectively, at 5, 10 and 20 °C and 10 Hz loading frequency. According to the 

strain-controlled simulation results, the fatigue life of the dry- and wet-processed 

CRM SMA mixtures was similar at higher strain (500 and 700µɛ), while slightly 

better for the dry-processed at lower strain (300 µɛ). Compared to the hybrid and 

SBS-modified SMA mixes, the dry-processed CRM SMA had a slightly higher Nf at 

lower strain (300 µɛ) and a significantly lower Nf at higher strain (500 and 700µɛ), 

especially at lower temperatures (5 and 10 °C). 

According to the stress-controlled simulation results (Figure 6-6), the fatigue life 

of the dry- and wet-processed CRM SMA mixes was similar, regardless of stress level 

or test temperature. Nf of the dry-processed CRM SMA was similar to those of the 

hybrid and SBS-modified SMA mixes at 5 °C and lower as the test temperature 

increased (10 and 20 °C). 
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Figure 6-5. SMA fatigue life under strain control 
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Figure 6-6. SMA fatigue life under stress control 
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6.4 Summary and Conclusions for Fatigue Testing of PEM and SMA 

Mixtures 

The effect on the viscoelastic and fatigue properties of PEM and SMA mixtures with 

variously modified asphalt binders (dry- and wet-processed CR, hybrid, and SBS) was 

investigated at 17 °C and 10Hz. Results show: 

 

1. The fatigue performance of the dry- and wet-processed CRM PEM mix was 

similar but significantly worse than that of hybrid and SBS-modified PEM mixes, 

which was similar, regardless of temperature or loading conditions. 

 

2. Under strain-controlled loading, the fatigue life of the dry-processed CRM SMA 

mix was similar to that of the wet-processed at higher strain (500 and 700µɛ) but 

slightly higher at lower strain (300 µɛ). The Nf of the dry-processed CRM SMA 

was slightly higher at lower strain (300 µɛ) and significantly lower at higher strain 

(500 and 700µɛ), especially at lower temperature (5 and 10 °C), than that of the 

hybrid and SBS-modified SMA mixtures. 

 

3. Under stress-controlled loading, Nf of the dry- and wet-processed CRM SMA was 

similar, regardless of stress level or test temperature. Nf of the dry-processed 

CRM SMA was similar to that of the hybrid and SBS-modified SMA mixes at 

lower temperature (5 °C) but lower as the test temperature increased (10 and 

20 °C). 
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CHAPTER 7 EFFECT OF WEATHERING ON 

RUBBERIZED PEM AND SMA 

7.1 Introduction 

Durability is one of the primary concerns of asphalt mix design, and weathering has 

not been sufficiently addressed. Current laboratory methods for simulating long-term 

aging focus on thermal oxidation aging in an oven, but field weathering combines 

lights, water, and thermal cycling, which no oven or binder-aging equipment, such as 

the RTFO and PAV methods, can simulate. An effective way to consider all the 

factors that contribute to asphalt mixture aging resistance is a weathering machine that 

can simulate the combined effects of heat, UV, oxidation, and rain. Hagos (2008) and 

Grzybowski et al. (2012) reported the combined effect of environmental factors ((UV 

light, oxidation, and moisture) on the performance of asphalt concrete. Here, we 

explored the effect of weathering on the durability properties of PEM and SMA 

mixture samples. Figure 7-1 shows the testing plan. 
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Figure 7-1. Flow chart to measure the durability properties of PEM and SMA 

 

7.2 Materials and Test Procedures 

The Georgia asphalt weathering device (GAWD) was designed to simulate the 

combined environmental conditions of UV light, water, and temperature. It weathers 

compacted asphalt mixture specimens from the top down, simulating the natural aging 

of in-place asphalt pavement. It consists of an environmental chamber, 

water-treatment system, and system controller (Fig. 7-2). Fluorescent UV-B lamps are 

used, as detailed in 6.1.3.3 of ASTM G154, and three 47-inch ATI Dimmable 

SunPower T5 lighting ballasts provide programmable intensities. It can distill and 

cool fresh water to 7.2 ± 3 ºC according to ASTM standard 4799. A heater in the 

environmental chamber ensures a constant temperature of 60 ºC. APWS testing 

parameters for one weathering cycle are: 51-min UV light exposure and 9-min UV 

light and water spray at 60 °C. These parameters come from the cycle requirements 

outlined in ASTM Standards 4799 and 4798. 
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Figure 7-2. Georgia asphalt weathering device 

 

Grzybowski et al. (2012) reported that 3,000-hours’ weathering is similar to PAV 

aging. Therefore, Superpave gyratory compacted (SGC) PEM and SMA mixture 

samples were weathered in the device for 1,000 and 3,000 hours (Figure 7-2).  

 

7.3 Results and Discussions 

7.3.1 Influence of weathering on |E*| of PEM 

Figure 7-3 shows the |E*| master curve of unaged and aged PEM mixture samples. A 

t-test (α = 0.05) was used to determine whether the dry-processed rubberized PEM 

mix performed as well as the other PEM mixes. The t-test showed no significant 

difference, regardless of aging. 
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Figure 7-3. |E*| master curves: (a) unaged and 1000-hour aging; (b) unaged and 

3000-hour aging 

 

Furthermore, a t-test (α = 0.05) was performed to compare |E*| between aging 

levels: unaged versus 1,000-hour aging and unaged versus 3,000-hour aging for each 

PEM mixture. The results showed no difference between unaged and 1,000-hour aged 

specimens, but statistically significant differences between unaged and 3,000-hour 

aged specimens at low frequency and low temperatures (0.1 Hz at 4 °C and 20 °C) or 

high temperature (45 °C). Weathering had more effect on |E*| at a low frequency or a 

high temperature than at a high frequency or a low temperature. 

Many honeycomb-like structures were observed on the asphalt binder surface of 
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the PEM samples, indicating that it foamed due to the interaction of the environment 

factors (Figure 7-4). 

 
 

Figure 7-4. Asphalt foamed in PEM samples 

 

The ratio of |E*| between the long-term aged and unaged specimens can elucidate 

the effects of aging on the mixtures’ stiffness. To compare the effect of weathering on 

|E*|, aging ratio (AR) was calculated according to Equations 7-1 and 7-2. Figures 7-5 

to 7-8 show the results of AR for all PEM mixtures. For simplicity, 1,000- and 

3,000-hour aging in the weathering device were noted as long-term aging level 1 

(LTA1) and long-term aging level 1 (LTA2), respectively. 

𝐴𝑅1 =
|𝐸∗| 𝐿𝑇𝐴1

|𝐸∗| 𝑢𝑛𝑎𝑔𝑒𝑑
                                 (7-1) 

 

 𝐴𝑅2 =
|𝐸∗|𝐿𝑇𝐴2

|𝐸∗| 𝑢𝑛𝑎𝑔𝑒𝑑
                                 (7-2) 

 

where: 

AR = Aging Ratio 

|𝐸∗| 𝑢𝑛𝑎𝑔𝑒𝑑= |E*| value for unaged mixture 

|𝐸∗| 𝐿𝑇𝐴1= |E*| value for 1,000-hour aged mixture 

|𝐸∗| 𝐿𝑇𝐴2= |E*| value for 3,000-hour aged mixture 
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Figure 7-5. Modular aging ratio for dry-processed rubberized PEM  

 

 
Figure 7-6. Modular aging ratio for wet-processed rubberized PEM  

 

 
Figure 7-7. Modular aging ratio for hybrid PEM 
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Figure 7-8. Modular aging ratio for SBS PEM  

 

 

Figures 7-5 to 7-8 indicate that both AR1 and AR2 for all PEM mixtures increased 

with an increase in temperature, suggesting that weathering had more effect on |E*| at 

high temperatures than at low temperatures. Note that all AR1 at 4 °C and AR2 at 0.1 

Hz and 4 °C are less than 1.0, indicating that the |E*| of all PEM mixtures at 4 °C or at 

0.1 Hz and 4 °C decreased after LTA1 or LTA2. The effect of moisture on PEM 

samples may be responsible.  

Compared to the control SBS-modified PEM specimens, both dry- and 

wet-processed PEM specimens had higher AR1 and AR3 values at a low frequency 

and a high temperature (0.01 or 0.1Hz at 45 °C), while AR1 and AR2 values for both 

dry- and wet-processed rubberized PEM mixes were lower at a low temperature 

(4 °C). Thus, both dry- and wet-processed CRM PEM mixes exhibited higher |E*| 

rates at a high temperature and lower at a low temperature than the control 

SBS-modified PEM mix after 1000- or 3000-hour weathering. 
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Figure 7-9 shows the |E*| master curve of unaged and aged SMA samples. A t-test (α 

= 0.05) determined that the dry-processed CRM SMA mixture’s |E*| did not differ 
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significantly from the others’, with or without aging, indicating similar weathering 

resistance. 

A t-test (α = 0.05) was also performed to compare |E*| between aging levels: 

unaged versus 1,000-hour aging and unaged versus 3,000-hour aging for each SMA 

mixture. Trends were similar to those found for the PEM mixtures: no difference 

between unaged and 1,000-hour aging, but 3,000-hour aging had a significant effect 

on |E*| at lower frequency (0.1 Hz) or higher temperature (45 °C). 

 

 
Figure 7-9. |E*| master curves for SMA: (a) unaged and 1000-hour aging; (b) unaged 

and 3000-hour aging 
 

Figures 7-10 to 7-13 show aging ratio (AR) results for all SMA mixtures. Both 
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were higher than those at lower temperature or higher load frequency. The trend of 

AR1 and AR2 for SMA is the same as for PEM. Both dry- and wet-processed CRM 

SMA mixtures exhibited slightly higher AR1 and AR2 values at higher temperature 

than hybrid and SBS-modified SMA mixtures, indicating that at a high temperature, 

|E*| increases more in rubberized SMA mixes than in hybrid and SBS-modified SMA 

mixes after 1,000- or 3,000-hour weathering. 

 
Figure 7-10. Modular aging ratio for dry-processed rubberized SMAs 

 
Figure 7-11. Modular aging ratio for wet-processed rubberized SMAs 
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Figure 7-12. Modular aging ratio for SBS SMA  

 
Figure 7-13. Modular aging ratio for hybrid SMA  

 

7.3.3 Influence of weathering on fatigue life 

CX tests showed two types of failure patterns for aged PEM and SMA samples. 

Mid-failure tests are considered good because the LVDTs are able to capture the 

major damage throughout the test. End-failure tests are not as good since 

macro-cracking localizes beyond the experimental measurement range (Hou 2009; 

2010). Therefore, we consider end-failure test results invalid in this study. 

Most PEM samples aged either 1,000 or 3,000 hours had top end-failures because 

they had higher air voids; aging at the top was worse than at the bottom, resulting in 

easy macro-cracking, and CX testing was not successful. Most aged SMA samples 
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had mid-failures; the CX test was successful. It also found that aged samples had 

more end-failures than unaged samples; few unaged samples had end-failures. 

 

Figure 7-14. Failure locations: (a) mid-failure; (b) end-failure (Hou 2009) 

 

Figures 7-15 and 7-16 show the fatigue life results for the 3000-hour SMA mixes. 

The fatigue life of the dry- and wet-processed CRM SMA mixes were similar, 

regardless of strain and stress level or test temperature. However, Nf of the 

dry-processed CRM SMA mix was lower than that of hybrid and SBS-modified SMA 

mixtures, regardless of strain and stress level or test temperature. 

 

 

 



92 

 

 

 

 
Figure 7-15. SMA fatigue life under strain control after 3,000-hour aging 
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Figure 7-16. SMA fatigue life under stress control after 3,000-hour aging 
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7.3.4 Influence of weathering on rutting resistance 

Figure 7-17 shows the rutting depth results for unaged and aged PEM mixtures. As 

expected, rutting depth decreased as weathering time increased. For unaged samples, 

the rutting depth of dry-processed CRM PEM (2.6 mm) was similar to that of 

SBS-modified PEM (2.7 mm); less than that of the wet-processed CRM mixture (3.2 

mm); and more than that of the hybrid PEM mix (2.1 mm). After 1,000-hours aging, 

the rutting depth of the dry-processed CRM PEM mix was higher than that of the 

other three PEM mixtures. After 3,000-hour aging, the rutting depth of the dry- and 

wet-processed CRM PEM mixtures was similar but higher than that of the hybrid and 

SBS-modified PEM mixtures. Furthermore, hybrid PEM mix had the lowest rutting 

depth, regardless of aging. 

 
Figure 7-17. PEM rut depth 

 

Figure 7-18 shows the rutting depth results for unaged and aged SMA mixtures. As 

for PEM, rutting depth decreased as weathering time increased. For the unaged 

samples, dry-processed CRM SMA had the deepest rutting followed by SBS-modified 

SMA and wet-processed CRM SMA. Dry- and wet-processed CRM SMA rutting was 
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similar and deeper than that of hybrid and SBS SMA, regardless of aging time. Hybrid 

SMA, like hybrid PEM, had the least rutting, regardless of aging.  

 
Figure 7-18. SMA rut depth  

 

7.3.5 Influence of weathering on Cantabro loss 

The raveling resistance of PEM mixtures is generally investigated using the Cantabro 

loss test, which evaluates the bonding between aggregate particles and asphalt binders 

based on abrasion and impact. In this test, the gyration samples with a diameter of 150 

mm and a height of 130 mm are weighed and placed in a Los Angeles Abrasion Tester 

without the steel ball, and the drum is turned for 300 revolutions. The percentage of 

mass lost during this process is used to evaluate the raveling resistance of PEMs. 

Figure 7-19 shows the Cantabro loss results for unaged and aged PEM mixtures. 

Hybrid PEM had the highest loss (18.4%); dry- and wet-processed CRM PEM 

mixtures had similar losses (17.7% and 17.4%, respectively); SBS-modified PEM had 

the least loss at 14.9%. After 1,000 and 3,000 hours of aging, Cantabro loss was 

similar in dry- and wet-processed CRM PEM samples but higher in the hybrid and 

SBS-modified PEM. SBS-modified PEM had the least Cantabro loss, regardless of 

aging. 
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Figure 7-19. Cantabro loss results 

 

7.3.6 Influence of weathering on indirect tensile strength 

The indirect tensile strength test (IDT) is used to determine asphalt concrete mixtures’ 

strength and resistance to fatigue, temperature cracking, and rutting. Testing was 

conducted according to ASTM D 6931–12.  

Prior to the IDT test, the specimens were placed in a water bath for ≥30<120 

minutes. During testing, 13-mm-wide strip loading was used for a 101-mm-diameter 

specimen to provide uniform loading at a loading rate of 51 mm/minute. Peak load 

was recorded, and the split tensile strength calculated using Equation 7-3. 

S𝑡 =
2000𝑃

𝜋𝑡𝐷
                           (7-3) 

where St=IDT strength, kPa 

P=maximum load, N 

t=specimen height, mm 

D=specimen diameter, mm. 
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Figure 7-20. Water bath 

  

Figure 7-21. Indirect tensile strength test 

 

Figures 7-22 and 7-23 illustrate the IDT results for unaged and aged PEM and 

SMA mixtures. IDT values increased after 1,000 hours then decreased after 3,000 

hours for all mixtures except those with dry-processed CRM, which increased 

continually after both aging conditions. For PEM mixtures, the IDT value of the 
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unaged, dry-processed CRM mix was lowest followed by wet-processed CRM mix; it 

was significantly higher for the hybrid and SBS-modified mixtures. However, after 

3,000 hours, the IDT values for the dry- and wet-processed CRM PEM were similar 

and higher than that of the hybrid and SBS-modified PEM. Among the SMA mixtures, 

unaged, dry-processed CRM had a slightly lower IDT than the others, but after 3,000 

hours, the IDT of both dry- and wet-processed CRM mixes was higher than that of the 

hybrid and SBS-modified mixtures. 

 
Figure 7-22. Indirect tensile strength results for PEM 

 
Figure 7-23. Indirect tensile strength results for SMA 
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7.4 Summary and Conclusions on Weathering Effects  

The effect of weathering on the performance of CRM, hybrid, and SBS-modified 

asphalt binders mixed with PEM and SMA was tested and the following conclusions 

can be drawn: 

1. The |E*| of dry-processed CRM PEM and SMA mixes did not differ 

significantly from the other samples’, regardless of aging duration (unaged, 

1,000, or 3,000 hours). 

2. The |E*| for each PEM and SMA mixture did not differ significantly between 

unaged and 1,000 hours of aging. However, they were all significantly 

hardened after 3,000 hours of aging. 

3. After 3000-hours’ aging, the fatigue life of dry-processed CRM SMA mix was 

similar to that of wet-processed but shorter than that of hybrid and SBS- 

modified SMA mixes, regardless of strain and stress levels and test 

temperatures.  

4. After 3,000 hours’ aging, the test could not measure the fatigue life of PEM 

mixtures. 

5. Rutting and Cantabro loss were higher in dry- and wet-processed CRM PEM 

mixes than in control hybrid and SBS-modified PEM, regardless of aging.  

6. After 3,000 hours, IDT values were higher for dry-processed CRM PEM and 

SMA than for controls. 
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CHAPTER 8 INTERACTION BETWEEN CRM AND ASPHALT 

8.1 Introduction  

The interaction between CRM and asphalt binder in the dry process has received 

much less attention than wet processing. A prevailing assumption is that in the dry 

process, CRM is added to replace some of the fine aggregates, so its effects on asphalt 

are negligible.  

This study focused on the interaction between CRM and asphalt binder in 

dry-processed rubberized PEM and SMA mixes during and after the mixing process, 

including silo storage time prior to paving. A series of tests on rheological properties 

and chemical analyses were conducted on samples stored in the oven for 30, 60, and 

90 minutes at 160°C using such tools as the dynamic shear rheometer (DSR), 

high-pressure gel permeation chromatography (HP-GPC), and Fourier-transform 

infrared spectroscopy (FTIR). Atomic force microscopy (AFM) was used to explore 

nano-structure characteristics. Figure 8-1 shows the experimental design. 
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Figure 8-1. Flow chart of the experimental design  

8.2 Materials and Test Methods 

Materials and mixture preparation  

Aggregate types, PEM and SMA mixture gradations, fibers, mineral fillers (fly ash), 

hydrated lime, asphalt PG grade, and CRM were identical to those listed in Chapter 4 

(Tables 4-1 to 4-4). A wet-processed CRM binder was used as a control. Chapter 4 

(section on materials and test procedures) also defines the production of the CRM 

binder and how the wet-processed rubberized mixtures were mixed. Storage 

temperature was set at 160 ℃  for 30, 60, and 90 minutes to investigate the 

interaction between CRM and asphalt over time. 

     

Extract of asphalt binder 

ASTM D1856, Abson recovery, has been the major method for recovering asphalt 

binder since 1933. Recently, ASTM D5404, Recovery of Asphalt Using the Rotavapor 

Apparatus, has become more widely used. Here, the CRM asphalt binders were 

extracted from the produced HMA mixture based on the ASTM D2172 procedure, 

using the centrifuge extractor and tetrahydrofuran (THF) as the solvent. 

 

 

Figure 8-2. Asphalt binder extracted from mixture dissolved in THF  
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Figure 8-3. Separated asphalt binder and THF 

 

Gel Permeation Chromatography 

Waters GPC equipment and software (Milford, MA) were used for the 

chromatographic analysis of binders (Fig. 8-4). A differential refractive index meter 

(Waters 410) was used as a detector, and two columns (Waters HR 4E and HR 3) were 

used to separate binder constituents by molecular size. Table 8-3 shows the column 

specifications. Throughout testing, the binder constituents were kept at 35 °C in a 

column oven. In the mobile phase, THF flowed at a rate of 1 ml/min. The 

concentration rate was 0.5% by weight of binder as recommended by the equipment 

manufacturer. 

 

 

Figure 8-4. GPC system used in this study 

 

Each binder sample, dissolved in THF, went through a 0.45-μm syringe filter prior 
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to the injection module. A sample volume of 50 μl was injected for each test, which 

took 30 minutes; elution started approximately 11 minutes after injection and ended at 

approximately 21 minutes (Fig. 8-5). Each sample was tested three times, and the 

average value of the large molecular size (LMS) portion was reported. 

 

Figure 8-5. A typical chromatogram of an asphalt binder  

 

In Figure 8-5, the area under the curve represents 100% of the binder molecules 

injected into the GPC system. Asphalt binder constituents are generally classified into 

several groups. In this study, the chromatogram profile was partitioned into 13 slices 

and three parts: large molecular size (LMS; slices 1-5), medium molecular size (MMS; 

6-9), and small molecular size (SMS; 10-13). Only the LMS value was used to 

characterize binder properties. Research has shown that LMS correlates best with 

asphalt binder properties. 

 

Fourier-transform infrared spectroscopy (FTIR) Test 

FTIR can measure the infrared absorbance spectrum of a solid, liquid, or gas. Bonding 

in the test material is detected according to the assignments of the wave numbers of 

the main bands (Table 8-4). 
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Table 8-1. Assignments of the main bands of asphalt binder in FTIR spectra 

Wave number(cm
-1

) Assignment 
a
 

3594,3735 O-H 

2924, 2853 C-H aliphatic 

1735 C=O 

1700 C=O conjugated 

1600 C=C AROMATIC 

1460 C-H of –(CH2)n-(aliphatic index) 

1376 C-H of –CH3 (aliphatic branched) 

1030 S=O sulfoxide 

966 C-H trans disubstituted –CH=CH-(butadiene block) 

748,690 C-H aromatic monosubstitued (styrene block)  
a
=Stretching, =bending 

 

  We used a NICOLET iD7 ATR FTIR spectrometer (Fig. 8-6; Thermo Scientific) 

with 4-cm
-1 

resolution, scanning frequency of 16 times, and test range of 500-4000 

cm
-1

. The main result range, 500-2000 cm
-1

, was observed to determine the change in 

index (S=O, C=O). 

 

Figure 8-6. FTIR system used in this study 

 

After determining the characteristic absorption bands of asphalt, the functional 

and structural indices were calculated from valley to valley rather than band heights 

because this approach accounts for several vibrations of the same type simultaneously 

(e.g., C=O ester, acid, and ketone vibrations between 1753 and 1635 cm-1). Equation 
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8-1 shows ratio changes in CRM asphalt binders after storage: 

  

    (8-1) 

 

8.3 Results and Discussion  

8.3.1 Results for rubberized PEM 

DSR results 

Figure 8-7 shows the complex shear modulus (G*) values of binders extracted from 

dry-processed rubberized PEM at different storage times. Longer storage time 

increased their G*, and binder extracted from 90-minute aged mixtures had the 

highest value. Binders extracted from mixtures stored for 30 minutes had the same G* 

as wet-processed CRM asphalt mixtures.  

 
Figure 8-7. G* of asphalt binder extracted from rubberized PEM 

 

Table 8-2 shows the results of a one-way analysis of variance, which found no 

difference at the 05.0  significance level between the G* values of asphalt 

binder extracted from dry-processed PEM stored for 30 minutes and wet-processed 
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PEM. 

 

 

Table 8-2. Statistical analysis of G* of asphalt binder from rubberized PEM 

 30 60 90 Wet 

30 - S S N 

60  - S S 

90   - S 

Wet    - 

Note: S=significant difference; N=no significant difference; significance level=0.05 

 

All binders were tested at 76 ℃ and thus exhibit viscoelasitc properties. As 

Figure 8-8 shows, the phase angles of all binders extracted from dry-processed 

rubberized PEM decreased as storage time increased from 30 to 90 minutes. As 

expected, the phase-angle values of wet-processed binders at 76 ℃ were greater than 

those of dry-processed recovered binders but the same as those of dry-processed 

recovered binders stored for 30 minutes, indicating that their elasticity is equivalent. 

  

 
Figure 8-8. Phase angle of asphalt binders extracted from rubberized PEM 
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Table 8-3 shows that storage time significantly affected phase angle. The phase 

angles of binders extracted from dry-processed rubberized PEM after 30 and 60 

minutes’ storage did not differ significantly from those of wet-processed PEM. 

 

Table 8-3. Statistical analysis of phase angles of binders from rubberized PEM 

 30 60 90 Wet 

30 - S S N 

60  - S N 

90   - S 

Wet    - 

Note: S=significant difference; N=no significant difference; significance level=0.05 

 

Figure 8-9 shows that the G*/sin value of binders extracted from dry-processed 

rubberized PEM increases with storage time. Binders extracted from dry-processed 

rubberized PEM stored for 30 minutes had the same value as the wet-processed and 

thus, their rutting resistance is equivalent. 

  
Figure 8-9. Rutting resistance of asphalt binders extracted from rubberized PEM  

 

Table 8-4 reports the statistical analysis showing that the change in rutting 
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resistance factor between extracts from dry-processed rubberized PEM stored for 30 

minutes and wet-processed PEM was not significant. In addition, for each asphalt 

binder extracted from dry-processed rubberized PEM, differences between storage 

periods were statistically significant. Obviously, longer storage time improves the 

rutting resistance of dry-processed rubberized PEM. The interaction between CRM 

and binder results in a stiffer asphalt binder due to dry-process mixing and aging. 

 

Table 8-4. Statistical analysis of asphalt binder rutting resistance  

 30 60 90 Wet 

30 - S S N 

60  - S S 

90   - S 

Wet    - 

 

 

 

GPC results 

Figure 8-10 shows the LMS values for control and binders extracted from loosely 

mixed PEM based on the GPC test as a function of aging times. In general, the LMS 

values of both dry-processed binders increased over time. Wet- and approximately 

45-minute aged dry-processed CRM asphalt binder have the same molecular size 

distribution.  
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Figure 8-10. LMS of asphalt binder extracted from rubberized PEM 

 

FTIR results 

Figure 8-11 shows infrared (IR) spectrum analysis images of four asphalt binders 

extracted from PEM. Storage time changed their chemical bonding. The asphalt 

binder aging process is an oxidation reaction. Asphalt is composed of hydrocarbons 

and small amounts of metals. Under atmospheric conditions, the oxygen attacks the 

weak molecular bonding in the asphalt, yielding carbon dioxide and water. Nitrogen 

and sulfur may become nitrogen and sulfur dioxide and escape the asphalt binder. The 

absorbance at 1,700 cm
-1

 and 1,030 cm
-1

 characterizes the carbonyl index (C=O) and 

the sulfoxide index (S=O), respectively. 
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Figure 8-11. FTIR spectra of CRM asphalt extracted from rubberized PEM 

 

Figure 8-12 shows the ratio changes in the carbonyl index (C=O) of CRM asphalt 

binders after different storage times. In dry-processed rubberized PEM, it increased 

after 30 minutes and decreased slightly after 90 minutes. Results were similar for 

asphalt binder extracted from wet-processed rubberized PEM. 

 

 

Figure 8-12. Bonding ratio (C=O) in CRM asphalt extracted from PEM 

 

8.3.2 Results for rubberized SMA 
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DSR results 

Figure 8-13 shows the G* values of asphalt binder extracted from dry-processed 

rubberized SMA after different storage times. Overall, G* increased with storage time. 

G* for the sample stored for 30 minutes was less than that of wet-processed CRM 

asphalt binder, but after 60 and 90 minutes, they seem equal. These results indicate 

that the G* of asphalt binder in dry- and wet-processed rubberized SMA can reach the 

same level. 

 
Figure 8-13. G* of asphalt binder extracted from rubberized SMA 

 

Table 8-5 shows the results of a one-way analysis of variance of the significance 

of the change in G* with increased storage. No significant difference at the 05.0  

level between the G* of asphalt binder extracted from dry-processed rubberized SMA 

after 90 minutes’ storage and wet-processed SMA was found.  

 

Table 8-5. Statistical analysis of the G* of asphalt binder from rubberized SMA 

 30 60 90 wet 

30 - S S S 
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60  - N S 

90   - N 

Wet       - 

Note: S=significant difference; N=no significant difference; significance level=0.05 

 

Figure 8-14 shows that the phase angles of all binders extracted from 

dry-processed rubberized SMA decreased as storage time increased from 30 to 90 

minutes. As expected, the phase angle values of asphalt binder extracted from 

wet-processed rubberized SMA at 76 ℃ were greater than those of dry-processed 

binder. The phase angle of binders extracted from dry-processed rubberized SMA 

after 90 minutes’ storage was lowest. For the binders tested, longer storage increases 

elasticity.  

 
Figure 8-14. Phase angle of asphalt binder extracted from SMA 

 

Table 8-6 indicates no significant difference between asphalt binders extracted 

from dry-processed rubberized SMA stored for 30 minutes and wet-processed SMA. 

  

Table 8-6. Statistical analysis of phase angle of binder from rubberized SMA 
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30 - S S N 

60  - S S 

90   - S 

Wet       - 

Note: S=significant difference; N=no significant difference; significance level=0.05 

 

 

Figure 8-15 shows that the G*/sin value of binders extracted from dry-processed 

rubberized SMA increased with aging; it was over 1kPa for samples stored 30 minutes. 

Thus, storage can improve a binder’s pavement performance grade. Binders extracted 

from wet-processed rubberized SMA had a G*/sin value larger than that of 

dry-processed stored for 60 minutes and smaller than that of dry-processed stored for 

90 minutes. We conclude that over 60 minutes of storage can make the asphalt binder 

in dry-processed rubberized SMA reach a level similar to that of wet-processed. 

 
Figure 8-15. Rutting resistance of binder extracted from rubberized SMA 

 

Table 8-7 shows that storage times made statistically significant differences in the 

rutting resistance of all asphalt binders extracted from dry-processed rubberized SMA. 

The rutting resistance of those stored for 60 and 90 minutes did not differ from that of 

those extracted from wet-processed SMA.  
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Table 8-7. Statistical analysis of asphalt binder rutting resistance  

 30 60 90 wet 

30 - S S S 

60  - S N 

90   - N 

Wet       - 

Note: S=significant difference; N=no significant difference; significance level=0.05 

 

 

 

 

GPC results 

Figure 8-16 shows the LMS values of control and binders extracted from a loose, 

dry-processed rubberized SMA based on the GPC test as a function of aging time.  

 

Figure 8-16. LMS of asphalt binder extracted from rubberized SMA 

 

FTIR results 

Figure 8-17 shows the infrared (IR) spectrum analysis of four asphalt binders 

extracted from SMA mixtures. Peaks appear at 1700 cm
-1

, 1600 cm
-1

, and 1065 cm
-1

, 

indicating that the asphalt has aged in the storage process. 
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Figure 8-17. FTIR spectra of CRM asphalt extracted from rubberized SMA 

 

Figure 8-18 shows that the carbonyl index (C=O) of asphalt binder extracted from a 

dry-processed CRM SMA mixture increases with storage. After 30 minutes, it is close 

to that of wet-processed SMA. 

 

 

Figure 8-18. Bonding ratio (C=O) in CRM asphalt extracted from dry- and 

wet-processed rubberized SMA  
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8.3.3 Nanoscale evaluation of asphalt/CRM interaction  

Atomic force microscopy (AFM; Fig. 8-19) was used to determine how asphalt 

interacts with the crumb rubbers added in the dry process and to compare the 

microstructural properties of asphalt modified in the wet and dry processes. The aim 

was to determine whether the rubbers modify the binder or the mixture. ACLA probes 

were used in the AFM tapping mode to avoid damaging the asphalt binder surface 

and/or the tip and to reduce tip contamination. 

 

Figure 8-19. Nanosurf AFM 

 

Wet-processed rubberized asphalt binder was produced by mixing -30 mesh CRM 

at 10% of the weight of the asphalt binder with a base binder of PG 67-22 at 170 °C 

and 700 RPM for 45 minutes. Dry-processed rubberized asphalt binder was produced 

by mixing PG 67-22 asphalt with CRM at 10% of the weight of the asphalt binder and 

TOR at 4.5% of the weight of CRM for 2 minutes at 160 °C. Prior to AFM, an 

80-mesh sieve was used to remove the CRM in the unaged and short-term aged 

rubberized asphalt binders to avoid the effect of CRM particles on measurements. The 

filtered hot asphalt was poured onto a clean glass substrate, then placed in the oven 

(130 °C) for 5 minutes to form the smooth surface critical to successful AFM testing.  
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Figure 8-20. Topographic and phase images of PG 67-22 

  

Figure 8-21. Phase images of unaged rubberized asphalt binders 

  

Figure 8-22. Phase images of short-term aged rubberized asphalt binders 

 

Bee-like structures and the darker phases around them, which represent the parts 

Wet process 

Wet process Dry process 

Dry process 

‘bee-like’ structure Darker phase 
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with higher modulus, can be seen in all asphalt binders (Figs. 8-20 to 8-22), but their  

concentration in dry- and wet-processed rubberized asphalt differs obviously from 

each other before aging and slightly after short-term aging. Furthermore, we 

calculated the roughness of the topographical images of rubberized asphalt binder, 

and results showed that it was 21nm and 14nm before aging and 3.2 nm and 3.3 nm 

after short-term aging for the dry- and wet-processed binders, respectively. This 

finding indicates that the short-term aging during storage and paving decreases the 

difference in the microstructures of dry- and wet-processed rubberized binders. 

Additionally, the concentration of bee-like structures and the area of darker phases 

were significantly higher in rubberized asphalt binders than the base asphalt of PG 

67-22, regardless of dry or wet processing. 

 

8.3.4 Rheological properties of dry- and wet-processed rubberized 

binders 

To determine the difference in the rheological properties of dry- and wet-processed 

rubberized binders, we performed frequency sweep tests using a DSR according to 

AASHTO T 240. They were run with the 25-mm diameter plate and 1-mm testing gap 

geometry at 50 °C. Dry- and wet-processed rubberized binder samples were fabricated 

as for the AFM test, but the CRM was not removed. 

Figure 8-23 shows the frequency sweep results for virgin asphalt and dry- and 

wet-processed rubberized binders in terms of: (a) elastic modulus (G’), viscous 

modulus (G’’), and complex viscosity (|η*|); and (b) complex modulus (|G*|) and 

phase angle (δ). All dry-processed rubberized binders, regardless of aging, had similar 

results. In addition, compared to virgin asphalt, both dry- and wet-processed 

rubberized binders had significantly higher modulus (G’, G’’, and |G*|) and complex 
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viscosity (|η*|) but lower phase angle (σ). Thus, the dry and wet processes equally 

improved the high-temperature properties of asphalt binder. 

 

 

Figure 8-23. Frequency sweep results 

 

8.4 Summary and Conclusions on CRM-Asphalt Interaction 

A series of rheological property tests and chemical analyses were conducted on 

dry-processed rubberized mixtures stored in an oven at 160 ℃ for 30, 60, and 90 

minutes to evaluate the interaction of CRM and asphalt. Based on the DSR, GPC, and 

FTIR results, interaction is significant during the production and paving stages, 

regardless of mixture type. Other conclusions include: 
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1. At compaction temperature, the G*/sin(delta) of rubberized CRM in a dry- 

processed asphalt mixture increased with mixture storage time for both PEM and 

SMA. 

 

2. The LMS of extracted asphalt binder increased with storage time and 

corresponded with the DSR results for both rubberized PEM and SMA. 

 

 

3. Differences in carbonyl index (C=O) between binder extracted from dry- and 

wet-processed rubberized PEM were insignificant at some storage times, 

indicating that these periods of aging made no obvious difference.  

 

4. GPC and G* changes in LMS in DSR tests explained the interaction between 

CRM and asphalt during storage of dry-processed rubberized PEM.  

 

 

5. Dry-processed rubberized binders had similar moduli (|G*|, G’, and G’’), phase 

angles (σ), and complex viscosity (|η*|), whether they were aged a short time or 

not. 

 

6. Based on AFM testing, unaged, dry-processed rubberized asphalt has less surface 

roughness than wet-processed rubberized asphalt. However, after short-term aging, 

their roughness was similar. 
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CHAPTER 9 EFFECT OF WEATHERING ON CRM AND 

BINDER INTERACTION  

9.1 Introduction  

Any adverse effect of weathering on the interaction of CRM and asphalt would 

severely limit the usefulness of asphalt rubber as a paving material, but experimental 

data are lacking. We used rheological testing, GPC, and FTIR to determine the effects, 

with SBS binder as the control.  

 

9.2 Materials and Test Methods 

Aggregate type, PEM and SMA gradation, fibers, mineral fillers (fly ash), hydrated 

lime, asphalt PG grade, and CRM were identical to those listed in Chapter 4 (Tables 

4-1, 4-2, 4-3, 4-4). Production of the CRM binder, mixture preparation, and extraction 

of the asphalt were also the same. PEM and SMA mixed with different asphalt binders 

(dry processed, wet processed, SBS, and hybrid) were aged for 1,000 and 3,000 hours 

in the Asphalt Pavement Weathering System (APWS). Test procedures, including 

GPC and FTIR, were the same as indicated in Chapter 4, section 4.2 Materials and 

Test Procedures. The PAV method was used to determine the fatigue factor (G*sin(δ)) 

of asphalt binder extracted from the mixtures to characterize its rheological properties. 

 

9.3 Results and Discussions 

9.3.1 Effect of weathering on asphalt binder in PEM 

Rheological characteristics 

Figure 9-1 shows the G*sin(δ) of four asphalt binders extracted from PEM weathered 

for 1,000 or 3,000 hours. After 1,000 hours, the G*sin(δ) of dry-processed rubberized 
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CRM asphalt binder was almost equivalent to that of the SBS and hybrid binders and 

less than that of wet-processed rubberized CRM binder. After 3,000 hours, the 

G*sin(δ) of dry- and wet-processed rubberized CRM asphalt binder were almost 

equivalent and larger than that of SBS and hybrid. G*sin(δ) increased most in 

dry-processed rubberized CRM asphalt binder and least in SBS asphalt binder.  

 
Figure 9-1. G*sinδ (at 19 ℃) of asphalt binder extracted from PEM 

 

GPC results  

Figure 9-2 shows the LMS results for asphalt binder extracted from the four PEM 

mixtures after weathering for 1,000 or 3,000 hours. Weathering for 1,000 hours 

significantly increased LMS; wet-processed binders had the least increase, and hybrid 

the most. In general, the effect of weathering for 3,000 hours differed by binder type. 

The increase was smaller for CRM asphalt binder than SBS and hybrid; hybrid had 

the highest increase in LMS value (over 5.6% more than the 1,000-hour value), and 

wet-processed binder the least (almost identical).  

Hybrid binder proved most susceptible to weathering, and both dry- and 

wet-processed CRM binder were least. Aging time seems to have little influence on 
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the increase in LMS in CRM asphalt binder because of the carbon black in the CRM 

particles. Aging in asphalt binder is an oxidation reaction. Asphalt is composed of 

hydrocarbons and small amounts of metals. During the aging process, the natural 

resins and asphaltenes, which are soluble in aromatics, react with oxygen. In the CRM 

asphalt binder production process, the rubbers absorb the asphalt binder’s resin, oil, 

and lightweight elements, reducing the LMS value change.  

 
Figure 9-2. LMS of asphalt binder extracted from PEM 

 

FTIR results 

Figure 9-3 shows the infrared (IR) spectrum analysis of four asphalt binders extracted 

from PEM mixtures. The chemical bonding changed after weathering 1,000 or 3,000 

hours, with peaks at 1,700 cm
-1

, 1,600 cm
-1

, and 1,065 cm
-1

, indicating a 

dehydrogenated type of oxidation and generation of new, unsaturated bonds.  
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a) Dry process 

 

b) Wet process 
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c) SBS 

 

d) Hybrid 

Figure 9-3. FTIR spectra of asphalt binder extracted from PEM 

 

Figure 9-4 shows the ratio change（C=O）in the asphalt binder extracted from the 

four PEM mixtures after weathering 1,000 or 3,000 hours. The chemical bonding 

changed with aging, with a characteristic peak at 1,700 cm
-1

, corresponding to a C=O 

bond. After 1,000 hours, the carbonyl function rate (carbonyl index) increased to 

become almost the same for asphalt binders extracted from the four PEM mixtures but 
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at different rates. The increasing value of the C=O ratio was highest for hybrid asphalt 

binder and lowest for SBS.  

Up to 1,000 hours, the samples evolved significantly but then became less reactive. 

While the carbonyl index increased regularly up to 1,000 hours, it then decreased 

depending on weathering time and asphalt binder type. Evaporation, leaching, 

photo-oxidation, and other uncontrolled natural phenomena influence the nature and 

amount of each asphalt compound. 

  

 

Figure 9-4. Bonding ratio (C=O) of asphalt binder extracted from rubberized PEM 

 

 

9.3.2 Effect of weathering on asphalt binder in SMA 

Rheological characteristics 

Figure 9-5 shows the G*sin(δ) of four asphalt binders extracted from SMA mixtures 

after weathering 1,000 or 3,000 hours. Generally, it was almost the same for wet- and 

dry-processed CRM asphalt binder and less for hybrid and SBS asphalt binders. SBS 

was the lowest, and it increased less for asphalt binders extracted from SMA mixtures 

than PEM mixtures. It increased least in hybrid asphalt binder, but the increase in dry- 
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and wet-processed rubberized CRM asphalt binder was almost identical.  

 

 

Figure 9-5. G*sin(δ) (at 19 ℃) of asphalt binder extracted from SMA 

 

GPC results 

Figure 9-6 shows LMS results for asphalt binder extracted from the four SMA 

mixtures weathered for 1,000 or 3,000 hours. Weathering for 1,000 hours increased 

LMS, as it did in PEM mixtures. The increase was least in wet-processed binder but 

almost the same for the others and the same as that in PEM mixtures.  

For the samples weathered 3,000 hours, the general trend is similar to the findings 

for PEM. The increase in LMS value was still highest in hybrid binder and least in 

CRM asphalt binder, but dry-processed was less than wet-processed. SBS asphalt 

binder behaved as it did in the PEM mixture, and the increase in LMS value was the 

same as that for wet-processed asphalt binder. 
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Figure 9-6. LMS of asphalt binder extracted from SMA  

 

FTIR results 

Figure 9-7 shows the infrared (IR) spectrum analysis of the four asphalt binders 

extracted from SMA. Peaks at 1,700 cm
-1

, 1,600 cm
-1

, and 1065 cm
-1

 show 

enhancement after weathering 1,000 hours. 

 

a) Dry process 
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b) Wet process 

 

c) SBS 
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d) Hybrid 

Figure 9-6. FTIR spectra of asphalt binder extracted from SMA 

 

Figure 9-7 shows the ratio change (C=O) in the asphalt binder extracted from four 

SMA mixtures weathered for 1,000 or 3,000 hours. It increased regularly with 

weathering for 1,000 hours, least in SBS, indicating that SBS asphalt binder ages least 

to this stage. After 3,000 hours, the hybrid binder showed the highest increase in C=O 

bonding, and wet-processed CRM asphalt binder the least. The trend of these FTIR 

results reflects GPC results. Wet-processed asphalt binder is most resistant to aging, 

and hybrid the least. 
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Figure 9-7. Ratio of bonding (C=O) of asphalt binder extracted from SMA  

 

9.4 Summary and Conclusions on Effect of Weathering on CRM and 

Asphalt Interaction 

This chapter examined the influence of weathering on the interaction of CRM with 

binders. The following conclusions can be drawn:  

1. The values of G*sin(delta) differ significantly among the four asphalt binders 

extracted from PEM and SMA after weathering 1,000 or 3,000 hours. After 3,000 

hours, the fatigue factor of dry- and wet-processed rubberized asphalt binders was 

equivalent and larger than that of SBS and hybrid asphalt binders. 

 

2. The LMS of asphalt binders extracted from PEM and SMA increases significantly 

to 1,000 hours and slowly from 1,000 to 3,000 hours. The value of wet-processed 

asphalt binder was close to that of SBS and hybrid.  

 

3. For SMA mixtures, the ratio of C=O bonding in dry-processed rubberized asphalt 

binder was equivalent to the others’ after weathering for 3,000 hours. However, it 

was larger than that of wet-processed binders from PEM. Overall, the degree of 

aging of rubberized asphalt binder was almost the same. 
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CHAPTER 10 FIELD INSPECTION OF PAVEMENT 

PERFORMANCE 

10.1 Visual Investigation of Test Section 

We compared the performance of dry- and wet-processed rubberized open-graded 

friction course (OGFC) pavements to control OGFC pavements on State Route 247 

near Macon. Traffic control closed the lane for the inspection, according to the 

requirement of the FHWA’s Manual on Uniform Traffic Control Devices (MUTCD). 

Field inspection includes drilling core samples and investigating for evidence of 

distress: measuring rut depth and the amount and severity of cracking, raveling, 

bleeding, pushing, and potholes.  

Rut depth was measured in both sample areas’ wheel paths and recorded in units 

of 1/16 inch (Fig. 10-1). Rutting measurements were taken by “blocking” up the 

stringline using a hollow steel pipe (Fig. 10-2). 

 

 

Figure 10-1. Rut-depth ruler 
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Figure 10-2. Rut measurement 

 

Table 10-1 summarizes SR 247 pavement performance. After three years’ service, 

we found no cracking, raveling, bleeding, pushing, or potholes (Figs. 10-3, 10-4, and 

10-5), and all OGFC pavements showed only minor rutting at a depth of 1/16 inch. 

 

Table 10-1. Field inspection test results 

Item Control OGFC 
Rubberized 

OGFC (dry) 

Rubberized 

OGFC (wet) 

Rut Depth 

(1/16 inch) 

section 1 2 3 2 

section 2 2 2 3 

section 3 3 2 2 

section 4 2 3 3 

section 5 2 N/A 0 

Cracking (%) 0 0 0 

Raveling (%) 0 0 0 

Bleeding (%) 0 0 0 

Pushing (%) 0 0 0 
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Figure 10-3. Wet-processed rubberized OGFC surface 

 

  

Figure 10-4. Dry-processed rubberized OGFC surface 

  

Figure 10-5. Control OGFC surface 

 

10.2 Performance Evaluation of Core Samples 

Cores were drilled from the wheel paths and lane centers of each test section to 

determine the influence of traffic loading on pavement physical properties and 

durability (Figs. 10-6; 10-7). Of the 28 samples, 8 were wet-processed; 10 
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dry-processed; and 10 were control OGFC. 

 

   

Figure 10-6. Core sample drilling 

 

   

Figure 10-7. Core samples 

 

The Hamburg test using a retrofitted APA was performed on the core samples 

based on AASHTO T-324. Test specimens, 6 inches in diameter, were obtained by 

cutting the field core samples to a height of 2.5 inches. Each specimen consisted of 

two layers of HMA: a 1-inch top layer of OGFC and a 1.5-inch underlayer of 

Superpave asphalt mixture (Fig. 10-8). Four core samples for each OGFC test section 

were measured by retrofitted APA testing: two samples were from the wheel path, and 

another two were from the center path. Prior to the test, the specimens were 
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submerged in hot water (50 °C) for 30 minutes to reach the required temperature. The 

APA automatically ends the test when the steel wheels pass over the specimens 

20,000 times, or a 0.8-inch deformation is reached. 

 

   

Figure 10-8. Field core specimens for APA Hamburg testing 

 

Mixtures showing excessive susceptibility to moisture damage tend to undergo 

stripping, and usually, after a certain number of cycles, the slope of the curve for rut 

depth versus number of passes suddenly increases. Figure 10-9 shows typical 

deformation curves for samples that do and do not exhibit significant moisture 

damage in the Hamburg test.  

Post-compaction consolidation, creep slope, stripping slope, and stripping 

inflection point (SIP; Fig. 10-10) are widely used to evaluate the rut resistance and 

moisture-damage susceptibility of HMAs. Post-compaction consolidation is the 

deformation (in mm) at 1,000 wheel passes, assuming that the wheel densifies the 

mixture within the first 1,000 passes. Creep slope relates to rutting primarily due to 

plastic flow and is the number of wheel passes required to create 1 mm of rut depth. 

Stripping slope relates to rutting primarily due to moisture damage and is the number 

of wheel passes required to create 1 mm of rut depth after SIP (Yildirim et al., 2007), 

the point at which moisture damage starts and the number of wheel passes at the 

intersection of creep slope and stripping slope. A SIP over 10,000 load cycles and a 

OGFC 

Superpave 
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rutting depth of 12.5 mm indicate less susceptibility to moisture damage. 

 

Figure 10-9. Two different outputs of the HWTD test (Bhasin et al. 2004) 

 

 

Figure 10-10. Stripping point determination 

 

Figure 10-11 shows the top view of field core specimens after Hamburg testing. 

More asphalt binder moved onto the surface of cores containing rubberized OGFC, 

dry- or wet-processed, than those with control OGFC.  
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Figure 10-11. Top view of test specimens 

  

Table 10-2 shows the deformation of the specimens after 1,000, 5,000, 10,000, 

and 20,000 wheel passes. Core samples of wet- and dry-processed materials had 

similar and significantly greater rut depth than control samples after 20,000 wheel 

passes, regardless of their origin (wheel path or center path). 

  

Table 10-2. Rut depth per number of wheel passes 

Passes 

Rut Depth (mm) 

Dry Process Wet Process Control 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

1,000 2.35 2.15 2.25 3.00 1.93 2.47 1.91 1.68 1.80 

5,000 4.41 4.27 4.34 5.72 4.08 4.90 3.29 3.38 3.34 

10,000 5.29 5.84 5.57 6.88 5.64 6.26 4.03 4.39 4.21 

20,000 6.96 7.86 7.41 8.01 7.02 7.52 4.91 5.70 5.31 
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Figure 10-12 shows curves comparing rut depth and number of wheel passes for 

the field core specimens. None exhibits a stripping inflection point, suggesting no 

significant moisture damage after 20,000 wheel passes. Therefore, test data could only 

record post-compaction consolidation and creep slope. Creep slope is the inverse of 

the rate of rutting in the linear region of the plot after compaction. Table 10-3 and 

Figure 10-13 present the values of post-compaction consolidation and creep slope. 

 
Figure 10-12. APA Hamburg test results 

 

Table 10-3. Summary of test results 

 

Core Sample ID 

Dry Process Wet Process Control 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

Post-compaction 

(mm) 
2.35 2.15 2.25 3.00 1.93 2.47 1.91 1.68 1.80 

Creep Slope 

(passes/mm) 
N/A N/A 5625 N/A N/A 5769 N/A N/A 8513 

 

0

1

2

3

4

5

6

7

8

9

0 4000 8000 12000 16000 20000

R
u
t 

D
ep

th
 (

m
m

) 

Passes 

Dry Process, Wheel Path Dry Process, Center Path

Wet Process, Wheel Path Wet Process, Center Path

Control, Wheel Path Control, Center Path



140 

 

 

Figure 10-13. Creep slope for core samples 

 

The core samples with dry- or wet-processed rubberized OGFC had significantly 

higher post-compaction values than control samples after 1,000 wheel passes, 

suggesting that they are more susceptible to densification within the first 1,000 wheel 

passes. They also have significantly lower creep slope than control samples, 

indicating greater plastic deformation under traffic loading. 

To further analyze core sample performance, we calculated the rutting rates at 

2,000-pass intervals; that is, from 0-2,000, 2,000-4,000, and 18,000-20,000 passes. 

We labeled 10 intervals of 2,000 passes from 0-2,000 to 18,000-20,000 as I-1 to I-10 

(Table 10-4 and Fig. 10-14). We observed that rutting rates diminish as loading passes 

increase. All core samples had significantly higher rutting rates in the first two-cycle 

interval than the other intervals. Within the first 8,000 wheel passes, the rutting rates 

for core samples containing wet-processed binder OGFC were the highest, followed 

by those with rubberized OGFC; those with control OGFC had the least rutting. After 

8,000 wheel passes, the core samples with rubberized OGFC had slightly higher 

rutting rates than wet-processed or control OGFC. 
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Table 10-4. Rates of rutting at the two-cycle interval 

Two-Cycle Interval 

Rates of Rutting (mm/2000 Passes) 

Dry Process Wet Process Control 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

Wheel 

Path 

Center 

Path 
Average 

I1(0-2,000) 3.06 2.87 2.97 4.07 2.58 3.33 2.26 2.43 2.35 

I2(2,000-4,000) 0.95 0.99 0.97 1.24 1.04 1.14 0.75 0.64 0.70 

I3(4,000-6,000) 0.53 0.79 0.66 0.85 0.81 0.83 0.61 0.37 0.49 

I4(6,000-8,000) 0.49 0.59 0.54 0.35 0.75 0.55 0.39 0.35 0.37 

I5(8,000-10,000) 0.26 0.60 0.43 0.37 0.46 0.42 0.38 0.24 0.31 

I6(10,000-12,000) 0.35 0.53 0.44 0.33 0.35 0.34 0.24 0.21 0.22 

I7(12,000-14,000) 0.48 0.44 0.46 0.18 0.41 0.29 0.39 0.14 0.26 

I8(12,000-14,000) 0.19 0.44 0.31 0.43 0.15 0.29 0.20 0.20 0.20 

I9(14,000-16,000) 0.33 0.34 0.33 0.09 0.34 0.22 0.16 0.18 0.17 

I10(16,000-20,000) 0.32 0.27 0.30 0.10 0.13 0.12 0.32 0.15 0.24 

 

 
Figure 10-14. Rutting rates for rut profiles 

 

10.3 Summary and Conclusions on Field Investigation 

Test sections of rubberized and control OGFC were investigated by field visual 

inspection and laboratory testing of core samples. The following conclusions can be 
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drawn: 

1. The pavements from SR 247 Macon all exhibited excellent performance after 

three or five years’ service. Cracking, raveling, bleeding, pushing, and potholes 

were not found. 

2. Hamburg tests indicated that no cores from any OGFC pavement exhibited 

significant moisture damage after 20,000 wheel passes. All the samples met the 

criterion of 12.5 mm after 20,000 passes. 
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CHAPTER 11 SUMMARY AND CONCLUSIONS 

This project compared the long-term performance of hot asphalt mixes containing 

crumb rubber modifiers added in dry or wet processes to mixtures modified with SBS 

binder. A total of eight asphalt mixtures, four porous European mixtures (PEMs) and 

four stone matrix asphalts (SMAs), were designed with dry- and wet-processed CRM 

and SBS control binder in addition to hybrid binder. All of the modified binders had a 

PG 76-22.  

Long-term performance properties were investigated after the samples weathered 

in the Georgia Asphalt Weathering Device for 1,000 or 3,000 hours. Tests measured 

dynamic modulus, fatigue life, rutting, and Catanbro loss for the mixtures and used 

the dynamic shear rheometer (DSR), gel permeable chromatography (GPC), and 

Fourier-transform infrared (FTIR) spectroscopy to study the extracted binders. 

Laboratory investigation and visual field inspection support the following 

conclusions: 

1. G*/sin(σ) of unaged rubberized asphalt binder increased 14% and 20%, 

respectively, when 3% and 6% doses of TOR were added. The absolute difference 

in failure temperatures for the binders taken from the top and bottom of a tube was 

about 20% less than the controls’ when 3% and 6% doses of TOR were added to 

PG 67-22 asphalt. 

  

2. Following GDOT 114 and 123, PEM and SMA mixtures can be successfully 

designed to incorporate dry- and wet-processed CRM binders as well as hybrid 

and SBS-modified binders. 

  

3. The volumetric and rutting, moisture susceptibility, drain-down, and Catanbro loss 
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properties of designed PEM and SMA met Georgia requirements, although the 

rutting depths of dry-processed rubberized PEM and SMA were higher than those 

of control SBS. 

 

4. The dynamic modulus, |E*|, of dry-processed rubberized PEM or SMA did not 

differ significantly from that of other PEMs or SMAs, regardless of whether they 

were unaged or aged for 1,000 or 3,000 hours. 

 

5. No differences were found in |E*| between unaged and 1,000-hour aged samples, 

whereas 3,000-hour aging had a significant effect on |E*| at lower frequency or 

higher temperature for both PEMs and SMAs. 

 

6. The fatigue life of unaged dry-processed rubberized PEM or SMA was similar to 

that of wet-processed but generally lower than those of hybrid and SBS samples.  

 

7. After 3,000-hour aging, the fatigue life of the dry-processed rubberized SMA was 

similar to that of the wet-processed modified mixture but shorter than that of 

hybrid and SBS SMA, regardless of strain and stress levels or test temperatures. 

 

8. Rutting and Cantabro loss in both dry- and wet-processed PEM were greater than 

in the control SBS-modified and hybrid PEM, regardless of aging duration.  

 

9. DSR, GPC, FTIR, and AFM results indicated an interaction between CRM and 

asphalt binder during the production and paving stages, regardless of the type of 

mixture. 

 

10. Values of G*sin(δ) differed significantly among the four asphalt binders extracted 
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from PEM and SMA after weathering for 1,000 or 3,000 hours, based on DSR, 

GPC, and FTIR results, regardless of the type of mixture. 

 

11. The dry-processed and control pavements from SR 247 Macon exhibited good 

condition after three years in service. 
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